Practical aspects of Bayesian multivariate meta-analysis

被引:0
|
作者
Bodnar, O. [1 ]
Bodnar, T. [2 ,3 ]
机构
[1] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[2] Orebro Univ, Sch Business, Unit Stat, Fakultetsgatan 1, S-70281 Orebro, Sweden
[3] Stockholm Univ, Dept Math, Albano hus 1, Room C1275, Roslagsvagen 26, S-11419 Stockholm, Sweden
来源
关键词
multivariate meta -analysis; multivariate model of random effects; Metropolis -Hastings algorithms; rank plot; split-hatR estimate; MOMENTS;
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Multivariate meta-analysis is a mostly used approach when multivariate results of several studies are pooled together. The multivariate model of random effects provides a tool to perform the multivariate meta-analysis in practice. In this paper, we discuss Bayesian inference procedures derived for the multivariate model of random effects when the model parameters are endowed with two non-informative priors: the Berger-Bernardo reference prior and the Jeffreys prior. Moreover, two Metropolis-Hastings algorithms are presented, and their convergence properties are analysed via simulations.
引用
收藏
页码:7 / 11
页数:5
相关论文
共 50 条
  • [41] A multivariate mixed linear model for meta-analysis
    Kalaian, HA
    Raudenbush, SW
    [J]. PSYCHOLOGICAL METHODS, 1996, 1 (03) : 227 - 235
  • [42] mmeta: An R Package for Multivariate Meta-Analysis
    Luo, Sheng
    Su, Xiao
    Chen, Yong
    chu, Haitao
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2014, 56 (11): : 1 - 26
  • [43] Multivariate random-effects meta-analysis
    White, Ian R.
    [J]. STATA JOURNAL, 2009, 9 (01): : 40 - 56
  • [44] Commentary on 'Multivariate meta-analysis: potential and promise'
    Harbord, Roger M.
    [J]. STATISTICS IN MEDICINE, 2011, 30 (20) : 2507 - 2508
  • [45] A refined method for multivariate meta-analysis and meta-regression
    Jackson, Daniel
    Riley, Richard D.
    [J]. STATISTICS IN MEDICINE, 2014, 33 (04) : 541 - 554
  • [46] Hypothesis testing in Bayesian network meta-analysis
    Uhlmann, Lorenz
    Jensen, Katrin
    Kieser, Meinhard
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
  • [47] Bayesian meta-analysis of fMRI image data
    Han, Hyemin
    Park, Joonsuk
    [J]. COGNITIVE NEUROSCIENCE, 2019, 10 (02) : 66 - 76
  • [48] Using Bayesian inference to perform meta-analysis
    Schmid, CH
    [J]. EVALUATION & THE HEALTH PROFESSIONS, 2001, 24 (02) : 165 - 189
  • [49] Bayesian meta-analysis of Papanicolaou smear accuracy
    Cong, Xiuyu
    Cox, Dennis D.
    Cantor, Scott B.
    [J]. GYNECOLOGIC ONCOLOGY, 2007, 107 (01) : S133 - S137
  • [50] Bayesian meta-analysis of penetrance for cancer risk
    Ruberu, Thanthirige Lakshika M.
    Braun, Danielle
    Parmigiani, Giovanni
    Biswas, Swati
    [J]. BIOMETRICS, 2024, 80 (02)