Null controllability with constraints on the state for the linear Korteweg-de Vries equation

被引:6
|
作者
Chen, Mo [1 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
关键词
Null controllability; Korteweg-de Vries equation;
D O I
10.1007/s00013-015-0730-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with a null controllability problem for the linear Korteweg-de Vries equation with finite number of constraints on the state. First, we prove an adapted Carleman inequality, then we transform the controllability problem with constraints on the state into an equivalent controllability problem with constraint on the control, and solve the equivalent problem by the adapted Carleman inequality.
引用
收藏
页码:189 / 199
页数:11
相关论文
共 50 条
  • [41] RAPID EXPONENTIAL STABILIZATION FOR A LINEAR KORTEWEG-DE VRIES EQUATION
    Cerpa, Eduardo
    Crepeau, Emmanuelle
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (03): : 655 - 668
  • [42] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882
  • [43] ON THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION
    KENIG, CE
    PONCE, G
    VEGA, L
    DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) : 585 - 610
  • [44] KORTEWEG-DE VRIES EQUATION AND NON-LINEAR WAVES
    BAMPI, F
    MORRO, A
    LETTERE AL NUOVO CIMENTO, 1979, 26 (02): : 61 - 63
  • [45] BOUNDARY CONTROLLABILITY OF THE KORTEWEG-DE VRIES EQUATION ON A TREE-SHAPED NETWORK
    Cerpa, Eduardo
    Crepeau, Emmanuelle
    Valein, Julie
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03): : 673 - 692
  • [46] Boundary controllability for the Korteweg-de Vries-Burgers equation on a finite domain
    Li, Jie
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [47] On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network
    Cerpa, Eduardo
    Crepeau, Emmanuelle
    Moreno, Claudia
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2020, 37 (01) : 226 - 240
  • [48] Controllability of the Korteweg-de Vries equation from the right Dirichlet boundary condition
    Glass, O.
    Guerrero, S.
    SYSTEMS & CONTROL LETTERS, 2010, 59 (07) : 390 - 395
  • [49] Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain
    Cerpa, Eduardo
    Crepeau, Emmanuelle
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02): : 457 - 475
  • [50] Convergence of the Rosenau-Korteweg-de Vries Equation to the Korteweg-de Vries One
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    CONTEMPORARY MATHEMATICS, 2020, 1 (05): : 365 - 392