We study 't Hooft anomalies of discrete groups in the framework of (1+1)-dimensional multiscale entanglement renormalization ansatz states on the lattice. Using matrix product operators, general topological restrictions on conformal data are derived. An ansatz class allowing for optimization of MERA with an anomalous symmetry is introduced. We utilize this class to numerically study a family of Hamiltonians with a symmetric critical line. Conformal data is obtained for all irreducible projective representations of each anomalous symmetry twist, corresponding to definite topological sectors. It is numerically demonstrated that this line is a protected gapless phase. Finally, we implement a duality transformation between a pair of critical lines using our subclass of MERA.
机构:
Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USAStanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
Cotler, Jordan S.
Mozaffar, M. Reza Mohammadi
论文数: 0引用数: 0
h-index: 0
机构:
Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, IranStanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
Mozaffar, M. Reza Mohammadi
Mollabashi, Ali
论文数: 0引用数: 0
h-index: 0
机构:
Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, IranStanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
Mollabashi, Ali
Naseh, Ali
论文数: 0引用数: 0
h-index: 0
机构:
Inst Res Fundamental Sci IPM, Sch Particles & Accelerators, POB 19395-5531, Tehran, IranStanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA