Dynamics of Eckhaus modes in one-dimensional electroconvection patterns in nematics

被引:3
|
作者
Hidaka, Y [1 ]
Hayashi, K [1 ]
Tribelsky, MI [1 ]
Kai, S [1 ]
机构
[1] UNIV TOKYO,SCH MATH SCI,TOKYO 153,JAPAN
关键词
D O I
10.1080/10587259708041848
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The quantitative experimental study of the Eckhaus instability in one-dimensional systems is carried out, employing electrohydrodynamic convection in a nematic layer. The obtained Busse balloon is in good agreement with that predicted by the Eckhaus theory. However, the observed changes of the wavenumber for unstable roll patterns, caused by the Eckhaus instability, as well as the growth rates for the corresponding spatial modes differ dramatically from those the theory yields for the most unstable Eckhaus modes. Possible reasons for the disagreement are discussed.
引用
收藏
页码:357 / 362
页数:6
相关论文
共 50 条
  • [41] Dynamics of one-dimensional quantum droplets
    Astrakharchik, G. E.
    Malomed, B. A.
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [42] Homoclinic trajectories in one-dimensional dynamics
    Fedorenko, V. V.
    Sharkovsky, A. N.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (04) : 579 - 588
  • [43] Decay of correlations in one-dimensional dynamics
    Bruin, H
    Luzzatto, S
    Van Strien, S
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (04): : 621 - 646
  • [44] MOLECULAR DYNAMICS OF ONE-DIMENSIONAL SYSTEMS
    BISHOP, M
    BERNE, BJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (03): : 350 - &
  • [45] Dynamics of an impurity in a one-dimensional lattice
    Massel, F.
    Kantian, A.
    Daley, A. J.
    Giamarchi, T.
    Torma, P.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [47] Phason dynamics in one-dimensional lattices
    Lipp, Hansjoerg
    Engel, Michael
    Sonntag, Steffen
    Trebin, Hans-Rainer
    PHYSICAL REVIEW B, 2010, 81 (06)
  • [48] The dynamics of a family of one-dimensional maps
    Bassein, S
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (02): : 118 - 130
  • [49] ONE-DIMENSIONAL DYNAMICS FOR A DISCONTINUOUS MAP
    ALEXANIAN, M
    PHYSICA A, 1992, 181 (1-2): : 53 - 68
  • [50] Expansion of derivatives in one-dimensional dynamics
    Bruin, H
    van Strien, S
    ISRAEL JOURNAL OF MATHEMATICS, 2003, 137 (1) : 223 - 263