Modeling of Earth's bow shock: Applications

被引:3
|
作者
Chapman, JF [1 ]
Cairns, IH [1 ]
机构
[1] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
关键词
bow shock shape; Earth; Mach number; magnetohydrodynamics; magnetopause; modeling;
D O I
10.1029/2004JA010540
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
[ 1] Shock-crossing data obtained from spacecraft are used to test the shock location models derived by Chapman and Cairns [ 2003]. Three sets of data are considered: ( 1) ISEE 1 for 24-25 September 1987, ( 2) Wind, Geotail, IMP 8, and Interball for the intervals 26-27 April and 10-13 May 1999, and ( 3) IMP 8, Geotail, Magion-4, and Cluster during the period 1973-2003 from the bow shock database ( available at http://nssdc. gsfc.nasa.gov/ftphelper/bowshock.html). Derived from MHD simulations, the two shock models are for angles theta(IMF) = 45degrees and 90degrees between the upstream magnetic field B-IMF and solar wind velocity v(sw). These models have azimuthal asymmetries, and they depend explicitly on the upstream Mach number MA and ram pressure Pram. We also test Cairns et al.'s [ 1995] rotationally symmetric shock model. The new models perform better on average than the rotationally symmetric model, providing some evidence and support for the shock's shape being strongly dependent upon M-A and theta(IMF). We also compare our analyses here with model/spacecraft comparisons performed by Merka et al. [ 2003a] and discuss the importance of filtering on the model predictions.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] On the Transmission of Turbulent Structures across the Earth's Bow Shock
    Trotta, Domenico
    Pecora, Francesco
    Settino, Adriana
    Perrone, Denise
    Hietala, Heli
    Horbury, Timothy
    Matthaeus, William
    Burgess, David
    Servidio, Sergio
    Valentini, Francesco
    ASTROPHYSICAL JOURNAL, 2022, 933 (02):
  • [22] Transmission of foreshock waves through Earth’s bow shock
    L. Turc
    O. W. Roberts
    D. Verscharen
    A. P. Dimmock
    P. Kajdič
    M. Palmroth
    Y. Pfau-Kempf
    A. Johlander
    M. Dubart
    E. K. J. Kilpua
    J. Soucek
    K. Takahashi
    N. Takahashi
    M. Battarbee
    U. Ganse
    Nature Physics, 2023, 19 : 78 - 86
  • [23] Magnetic field fluctuations across the Earth's bow shock
    Czaykowska, A
    Bauer, TM
    Treumann, RA
    Baumjohann, W
    ANNALES GEOPHYSICAE, 2001, 19 (03) : 275 - 287
  • [24] A Review of Density Holes Upstream of Earth's Bow Shock
    G K Parks
    E Lee
    空间科学学报, 2011, 31 (06) : 693 - 704
  • [25] Hot flow anomalies near the Earth's bow shock
    Schwartz, SJ
    PHYSICS OF COLLISIONLESS SHOCKS, 1995, 15 (8-9): : 107 - 116
  • [27] Dissipative processes at the Earth's magnetosphere boundary and the bow shock
    Danilova, VS
    PROBLEMS OF GEOSPACE, 1997, : 143 - 149
  • [28] Entropy Generation across Earth's Collisionless Bow Shock
    Parks, G. K.
    Lee, E.
    McCarthy, M.
    Goldstein, M.
    Fu, S. Y.
    Cao, J. B.
    Canu, P.
    Lin, N.
    Wilber, M.
    Dandouras, I.
    Reme, H.
    Fazakerley, A.
    PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [29] Ultra low frequency waves at the Earth's bow shock
    Russell, CT
    Farris, MH
    PHYSICS OF COLLISIONLESS SHOCKS, 1995, 15 (8-9): : 285 - 296
  • [30] Observational Evidence for Stochastic Shock Drift Acceleration of Electrons at the Earth's Bow Shock
    Amano, T.
    Katou, T.
    Kitamura, N.
    Oka, M.
    Matsumoto, Y.
    Hoshino, M.
    Saito, Y.
    Yokota, S.
    Giles, B. L.
    Paterson, W. R.
    Russell, C. T.
    Le Contel, O.
    Ergun, R. E.
    Lindqvist, P. -A.
    Turner, D. L.
    Fennell, J. F.
    Blake, J. B.
    PHYSICAL REVIEW LETTERS, 2020, 124 (06)