Nonlocal thermoelasticity and its application in thermoelastic problem with temperature-dependent thermal conductivity

被引:23
|
作者
Luo, Pengfei [1 ]
Li, Xiaoya [1 ]
Tian, Xiaogeng [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Sch Aerosp Engn, Xian 710049, Peoples R China
基金
美国国家科学基金会;
关键词
Thermoelasticity; Nonlocal single-phase-lag model; Transient responses; Temperature-dependent thermal conductivity; 2-PHASE INTEGRAL ELASTICITY; FRACTIONAL ORDER THEORY; HEAT-CONDUCTION; NANO-BEAMS; SCATTERING; BEHAVIOR; MODEL;
D O I
10.1016/j.euromechsol.2020.104204
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Thermoelastic analysis at the nanoscale is becoming important due to the miniaturization of the device and wide application of ultrashort lasers, and the classical thermoelastic theory is no longer applicable under extreme environments, i.e. extremely high temperature gradient or heat flux, extremely short action time, and extremely small structure size. The nonlocal thermoelastic model is developed to predict the thermoelastic behavior of nanostructures under extreme environments in this paper. The governing equations with temperature-dependent thermal conductivity are solved by Kirchhoff and Laplace transformation. As a numerical example, the transient thermoelastic responses of a slab with temperature-dependent thermal conductivity are investigated. From numerical results, the effects of nonlocal parameters and the temperature-dependent thermal conductivity are discussed, systematically. The results show that the above parameters have significant effects on the transient thermoelastic responses, which is crucial to predict the thermoelastic response accurately for the design and processing of the nanostructures.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] EFFECT OF TEMPERATURE-DEPENDENT PROPERTIES ON THERMOELASTIC PROBLEMS WITH THERMAL RELAXATIONS
    He, Tianhu
    Shi, Shuanhu
    ACTA MECHANICA SOLIDA SINICA, 2014, 27 (04) : 412 - 419
  • [22] EFFECT OF TEMPERATURE-DEPENDENT PROPERTIES ON THERMOELASTIC PROBLEMS WITH THERMAL RELAXATIONS
    Tianhu He
    Shuanhu Shi
    ActaMechanicaSolidaSinica, 2014, 27 (04) : 412 - 419
  • [23] Model of Fractional Heat Conduction in a Thermoelastic Thin Slim Strip under Thermal Shock and Temperature-Dependent Thermal Conductivity
    Bayones, F. S.
    Abo-Dahab, S. M.
    Abouelregal, Ahmed E.
    Al-Mullise, A.
    Abdel-Khalek, S.
    Khalil, E. M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (03): : 2899 - 2913
  • [24] Infinite speed behavior of two-temperature Green-Lindsay thermoelasticity theory under temperature-dependent thermal conductivity
    Kumar, Anil
    Shivay, Om Namha
    Mukhopadhyay, Santwana
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):
  • [25] TEMPERATURE DISTRIBUTIONS ON SUBSTRATES HAVING TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITY
    DEAN, DJ
    TAYLOR, JC
    MICROELECTRONICS RELIABILITY, 1970, 9 (04) : 297 - &
  • [26] Application of the decomposition method to thermal stresses in isotropic circular fmis with temperature-dependent thermal conductivity
    Chiu, CH
    Chen, CK
    ACTA MECHANICA, 2002, 157 (1-4) : 147 - 158
  • [27] General exact solution of the fin problem with the power law temperature-dependent thermal conductivity
    Kader, Abass H. Abdel
    Latif, Mohamed S. Abdel
    Nour, Hamed M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (06) : 1513 - 1521
  • [28] Application of the decomposition method to thermal stresses in isotropic circular fins with temperature-dependent thermal conductivity
    C. -H. Chiu
    C. -K. Chen
    Acta Mechanica, 2002, 157 : 147 - 158
  • [29] Some exact solutions of the fin problem with a power law temperature-dependent thermal conductivity
    Moitsheki, R. J.
    Hayat, T.
    Malik, M. Y.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3287 - 3294
  • [30] Generalized solution of the thermoelastic problem for the axisymmetric structure with temperature-dependent properties
    Wang, Y.Z.
    Zan, C.
    Liu, D.
    Zhou, J.Z.
    European Journal of Mechanics, A/Solids, 2019, 76 : 346 - 354