InP-Based THz Beam Steering Leaky-Wave Antenna

被引:36
|
作者
Lu, Peng [1 ]
Haddad, Thomas [1 ]
Sievert, Benedikt [3 ]
Khani, Besher [2 ]
Makhlouf, Sumer [1 ]
Duelme, Sebastian [1 ]
Estevez, Jose Fernandez [1 ]
Rennings, Andreas [3 ]
Erni, Daniel [3 ]
Pfeiffer, Ullrich [4 ]
Stoehr, Andreas [1 ]
机构
[1] Univ Duisburg Essen, Dept Optoelect, D-47057 Duisburg, Germany
[2] NTT Germany AG & Co KG, D-61352 Bad Homburg Vor Der Hohe, Germany
[3] Univ Duisburg Essen, Dept Gen & Theoret Elect Engn, D-47057 Duisburg, Germany
[4] Univ Wuppertal, Inst High Frequency & Commun Technol, D-42119 Wuppertal, Germany
关键词
Indium phosphide; Substrates; III-V semiconductor materials; Beam steering; Photodiodes; Microstrip; Silicon; indium phosphide (InP); leaky-wave antenna (LWA); monolithic integrated circuits; wafer bonding; TERAHERTZ; MILLIMETER; ARRAYS; GUIDE; TRANSITIONS; SUPPRESSION; DISPERSION; DESIGN; MODEL;
D O I
10.1109/TTHZ.2020.3039460
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For mobile THz applications, integrated beam steering THz transmitters are essential. Beam steering approaches using leaky-wave antennas (LWAs) are attractive in that regard since they do not require complex feeding control circuits and beam steering is simply accomplished by sweeping the operating frequency. To date, only a few THz LWAs have been reported. These LWAs are based on polymer or graphene substrates and thus, it is quite impossible to monolithically integrate these antennas with state-of-the-art indium phosphide (InP)-based photonic or electronic THz sources and receivers. Therefore, in this article, we report on an InP-based THz LWA for the first time. The developed and fabricated THz LWA consists of a periodic leaking microstrip line integrated with a grounded coplanar waveguide to microstrip line (GCPW-MSL) transition for future integration with InP-based photodiodes. For fabrication, a substrate-transfer process using silicon as carrier substrate for a 50-mu m thin InP THz antenna chip has been established. By changing the operating frequency from 230 to 330 GHz, the fabricated antenna allows to sweep the beam direction quasi-linearly from -46 degrees to 42 degrees, i.e., the total scanning angle is 88 degrees. The measured average realized gain and 3-dB beam width of a 1.5-mm wide InP LWA are similar to 11 dBi and 10 degrees. This article furthermore discusses the use of the fabricated LWA for THz interconnects.
引用
收藏
页码:218 / 230
页数:13
相关论文
共 50 条
  • [31] Beam-switchable scanning leaky-wave antenna
    Wang, CJ
    Shih, YC
    Jou, CF
    ELECTRONICS LETTERS, 2000, 36 (07) : 596 - 597
  • [32] A Broadband Fixed-Beam Leaky-Wave Antenna
    Du, Hang
    Li, Zheng
    Chen, Meie
    Wang, Junhong
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (06) : 5434 - 5439
  • [33] New Planar Antenna Designs Using Surface-Wave Launchers for Controlled Leaky-Wave Beam Steering
    Podilchak, Symon K.
    Freundorfer, Al P.
    Antar, Yahia M. M.
    2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 1876 - +
  • [34] Non-Reciprocal Leaky-Wave Antenna at THz Based on Spatiotemporally Modulated Graphene
    Correas-Serrano, D.
    Alvarez-Melcon, A.
    Gomez-Diaz, J. S.
    Sounas, D. L.
    Alu, A.
    2016 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2016, : 1399 - 1400
  • [35] Performance Improvement of LC-Based Beam-Steering Leaky-Wave Holographic Antenna Using Decoupling Structure
    Kim, Hyungcheol
    Nam, Sangwook
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (04) : 2431 - 2438
  • [36] A Reconfigurable Multilayered THz Leaky-Wave Antenna Employing Liquid Crystals
    Fuscaldo, Walter
    Tofani, Silvia
    Zografopoulos, Dimitrios C.
    Baccarelli, Paolo
    Burghignoli, Paolo
    Beccherelli, Romeo
    Galli, Alessandro
    2017 11TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2017, : 849 - 851
  • [37] Sinusoidally Modulated Graphene Leaky-Wave Antenna for Electronic Beamscanning at THz
    Esquius-Morote, Marc
    Gomez-Diaz, Juan Sebastian
    Perruisseau-Carrier, Julien
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2014, 4 (01) : 116 - 122
  • [38] Fixed-Frequency Beam Steering from a Stub-Loaded Microstrip Leaky-Wave Antenna
    Karmokar, D. K.
    Thalakotuna, D. N. P.
    Esselle, K. P.
    Heimlich, M.
    Matekovits, L.
    PROCEEDINGS OF 2013 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2013, : 436 - 439
  • [39] SIW based Dirac Leaky-Wave Antenna
    Rezaee, Sina
    Memarian, Mohammad
    Eleftheriades, George V.
    2018 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2018, : 125 - 126
  • [40] Directive 2-D Beam Steering by Means of a Multiport Radially Periodic Leaky-Wave Antenna
    Comite, Davide
    Kuznetcov, Maksim
    Buendia, Victoria Gomez-Guillamon
    Podilchak, Symon K.
    Baccarelli, Paolo
    Burghignoli, Paolo
    Galli, Alessandro
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (05) : 2494 - 2506