On the eigenvalue problem involving the weighted p-Laplacian in radially symmetric domains

被引:3
|
作者
Drabek, Pavel [1 ]
Ho, Ky [2 ]
Sarkar, Abhishek [3 ]
机构
[1] Univ West Bohemia, Dept Math, Univ 8, Plzen 30614, Czech Republic
[2] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam
[3] Univ West Bohemia, NTIS, Tech 8, Plzen 30614, Czech Republic
关键词
The weighted p-Laplacian; The first eigenvalue; Exterior domain; Regularity; Asymptotic behavior; Maximum principles; Variational method; DEGENERATE ELLIPTIC-EQUATIONS; STURM-LIOUVILLE PROBLEM; UNBOUNDED-DOMAINS; REGULARITY; PRINCIPLE;
D O I
10.1016/j.jmaa.2018.08.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the following eigenvalue problem {-div (L(x) vertical bar del u vertical bar(p-2)del u) = lambda K(x)vertical bar u vertical bar(p-2)u in A(R1)(R2), u = 0 on partial derivative A(R1)(R2), where A(R1)(R2) := {x is an element of R-N : R1 < vertical bar x vertical bar < R-2} (0 < R-1 < R-2 <= infinity), lambda > 0 is a parameter, the weights L and K are measurable with L positive a.e. in A(R1)(R2) and K possibly sign-changing in A(R1)(R2). We prove the existence of the first eigenpair and discuss the regularity and positiveness of eigenfunctions. The asymptotic estimates for u(x) and del u(x) as vertical bar x vertical bar -> R-1(+) or R-2(-) are also investigated. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:716 / 756
页数:41
相关论文
共 50 条