Bifurcation curves of positive solutions for the Minkowski-curvature problem with cubic nonlinearity

被引:3
|
作者
Huang, Shao-Yuan [1 ]
Hwang, Min-Shu [2 ]
机构
[1] Natl Taipei Univ Educ, Dept Math & Informat Educ, Taipei 106, Taiwan
[2] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
关键词
bifurcation curve; positive solution; Minkowski-curvature problem; POSITONE PROBLEM; GLOBAL BIFURCATION; EXACT MULTIPLICITY; DIRICHLET PROBLEM; THEOREM;
D O I
10.14232/ejqtde.2021.1.41
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the shape of bifurcation curve S-L of positive solutions for the Minkowski-curvature problem {-(u,(x)/root 1-(u'(x))(2))' =lambda ( -epsilon u(3) + u(2) +u+1), -L< x < L, u(-L) = u(L) =0, where lambda,epsilon > 0 are bifurcation parameters and L > 0 is an evolution parameter. We prove that there exists epsilon(0) > 0 such that the bifurcation curve S-L is monotone increasing for all L > 0 if epsilon >= epsilon(0), and the bifurcation curve S-L is from monotone increasing to S-shaped for varying L > 0 if 0 < epsilon < epsilon(0).
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条