Bifurcation curves for the one-dimensional perturbed Gelfand problem with the Minkowski-curvature operator

被引:0
|
作者
Huang, Shao-Yuan [1 ]
Wang, Shin-Hwa [2 ]
机构
[1] Natl Taipei Univ Educ, Dept Math & Informat Educ, Taipei 106, Taiwan
[2] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
关键词
Perturbed Gelfand problem; Minkowski-curvature operator; S-shaped bifurcation curve; Exact multiplicity; CONJECTURE; PROOF;
D O I
10.1016/j.jde.2024.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the shapes of bifurcation curves of positive solutions for the one-dimensional perturbed Gelfand problem with the Minkowski-curvature operator {-(u'(x)/root 1 - (u'(x)(2)) = lambda exp (au/a+U), - L < x < L, u(- L) = u(L) = 0, where lambda > 0 is a bifurcation parameter and a, L > 0 are evolution parameters. We determine the shapes of the bifurcation curves for different positive values a and L. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:700 / 726
页数:27
相关论文
共 50 条