Evaluation of Neuropathological Features in the SOD1-G93A Low Copy Number Transgenic Mouse Model of Amyotrophic Lateral Sclerosis

被引:4
|
作者
Molnar-Kasza, Agnes [1 ]
Hinteregger, Barbara [1 ]
Neddens, Joerg [1 ]
Rabl, Roland [1 ]
Flunkert, Stefanie [1 ]
Hutter-Paier, Birgit [1 ]
机构
[1] QPS Austria GmbH, Grambach, Austria
来源
关键词
neuroinflammation; muscle phenotype; spinal cord; survival rate; muscle strength; body weight; PROLONG SURVIVAL; SPINAL-CORD; MICE;
D O I
10.3389/fnmol.2021.681868
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Amyotrophic lateral sclerosis (ALS) still depicts an incurable and devastating disease. Drug development efforts are mostly based on superoxide dismutase 1 gene (SOD1)-G93A mice that present a very strong and early phenotype, allowing only a short time window for intervention. An alternative mouse model is available, that is based on the same founder line but has a reduced SOD1-G93A copy number, resulting in a weaker and delayed phenotype. To be able to use these SOD1-G93A/low mice for drug testing, we performed a characterization of ALS-typical pathologies. All analyses were performed compared to non-transgenic (ntg) littermates of the same sex and age. In vivo analysis of SOD1-G93A/low mice was performed by weekly body weight measurements, analysis of the survival rate, and measurement of the muscle strength of 24-30 weeks old female and male SOD1-G93A/low mice. Immunofluorescent labeling of SOD1, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba1) protein was performed in the cervical, thoracic, and lumbar ventral horn of the spinal cord of 24-30 weeks old male and female SOD1-G93A/low mice. The musculus gastrocnemius of male SOD1-G93A/low mice was labeled with fluorophore-conjugated alpha-bungarotoxin and antibodies against phosphorylated neurofilaments. Fluorescent labeling was detected and quantified by macro-based image analysis. Although SOD1 protein levels were highly increased in both sexes and all age groups, levels strongly peaked in 30 weeks old male SOD1-G93A/low mice. Astrocytosis and activated microglia in the spinal cord ventral horn and phosphorylated neurofilaments in the motor unit of the musculus gastrocnemius progressively increased, while muscle strength progressively decreased in male SOD1-G93A/low mice. In female SOD1-G93A/low mice, only activated microglia increased progressively, while muscle strength was constantly reduced starting at 26 weeks. These differences result in a shorter survival time of male SOD1-G93A/low mice of about 3 weeks compared to female animals. The results suggest that male SOD1-G93A/low mice present a stronger pathology and are, therefore, better suitable to evaluate the efficacy of new drugs against ALS as most pathological features are developing progressively paralleled by a survival time that allows treatment to start before symptom onset.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Autophagy activation and neuroprotection by progesterone in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis
    Kim, Jean
    Kim, Tae-Youn
    Cho, Kyung-Sook
    Kim, Ha Na
    Koh, Jae-Young
    NEUROBIOLOGY OF DISEASE, 2013, 59 : 80 - 85
  • [22] Metabolic progression markers of neurodegeneration in the transgenic G93A-SOD1 mouse model of amyotrophic lateral sclerosis
    Niessen, Heiko G.
    Debska-Vielhaber, Grazyna
    Sander, Kerstin
    Angenstein, Frank
    Ludolph, Albert C.
    Hilfert, Liane
    Willker, Wieland
    Leibfritz, Dieter
    Heinze, Hans-Jochen
    Kunz, Wolfram S.
    Vielhaber, Stefan
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2007, 25 (06) : 1669 - 1677
  • [23] Effect of genetic background on onset and disease progression in the SOD1-G93A model of amyotrophic lateral sclerosis
    Mancuso, Renzo
    Olivan, Sara
    Mancera, Pilar
    Pasten-Zamorano, Andrea
    Manzano, Raquel
    Casas, Caty
    Osta, Rosario
    Navarro, Xavier
    AMYOTROPHIC LATERAL SCLEROSIS, 2012, 13 (03): : 302 - 310
  • [24] Preferential motor unit loss in the SOD1G93A transgenic mouse model of amyotrophic lateral sclerosis
    Hegedus, J.
    Putman, C. T.
    Tyreman, N.
    Gordon, T.
    JOURNAL OF PHYSIOLOGY-LONDON, 2008, 586 (14): : 3337 - 3351
  • [25] Compensatory changes in degenerating spinal motoneurons sustain functional sparing in the SOD1-G93A mouse model of amyotrophic lateral sclerosis
    Giusto, Elena
    Codrich, Marta
    de Leo, Gioacchino
    Francardo, Veronica
    Coradazzi, Marino
    Parenti, Rosalba
    Gulisano, Massimo
    Vicario, Nunzio
    Gulino, Rosario
    Leanza, Giampiero
    JOURNAL OF COMPARATIVE NEUROLOGY, 2020, 528 (02) : 231 - 243
  • [26] Treatment with a coinducer of the heat shock response delays muscle denervation in the SOD1-G93A mouse model of amyotrophic lateral sclerosis
    Kalmar, Bernadett
    Edet-Amana, Emem
    Greensmith, Linda
    AMYOTROPHIC LATERAL SCLEROSIS, 2012, 13 (04): : 378 - 392
  • [27] Rosmarinic Acid Alleviates Neurological Symptoms in the G93A-SOD1 Transgenic Mouse Model of Amyotrophic Lateral Sclerosis
    Seo, Ji-Seon
    Choi, Juli
    Leem, Yea-Hyun
    Han, Pyung-Lim
    EXPERIMENTAL NEUROBIOLOGY, 2015, 24 (04) : 341 - 350
  • [28] LncRNAs Associated with Neuronal Development and Oncogenesis Are Deregulated in SOD1-G93A Murine Model of Amyotrophic Lateral Sclerosis
    Rey, Federica
    Marcuzzo, Stefania
    Bonanno, Silvia
    Bordoni, Matteo
    Giallongo, Toniella
    Malacarne, Claudia
    Cereda, Cristina
    Zuccotti, Gian Vincenzo
    Carelli, Stephana
    BIOMEDICINES, 2021, 9 (07)
  • [29] Downregulation of the Potassium Chloride Cotransporter KCC2 in Vulnerable Motoneurons in the SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis
    Fuchs, Andrea
    Ringer, Cornelia
    Bilkei-Gorzo, Andras
    Weihe, Eberhard
    Roeper, Jochen
    Schuetz, Burkhard
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2010, 69 (10): : 1057 - 1070
  • [30] Human SOD1-G93A Specific Distribution Evidenced in Murine Brain of a Transgenic Model for Amyotrophic Lateral Sclerosis by MALDI Imaging Mass Spectrometry
    Acquadro, Elena
    Caron, Ilaria
    Tortarolo, Massimo
    Bucci, Enrico M.
    Bendotti, Caterina
    Corpillo, Davide
    JOURNAL OF PROTEOME RESEARCH, 2014, 13 (04) : 1800 - 1809