Synthesis and Properties of a Compositional Series of MIL-53(Al) Metal-Organic Framework Crystal-Glass Composites

被引:80
|
作者
Ashling, Christopher W. [1 ]
Johnstone, Duncan N. [1 ]
Widmer, Remo N. [2 ]
Hou, Jingwei [1 ]
Collins, Sean M. [1 ]
Sapnik, Adam F. [1 ]
Bumstead, Alice M. [1 ]
Midgley, Paul A. [1 ]
Chater, Philip A. [3 ]
Keen, David A. [4 ]
Bennett, Thomas D. [1 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[2] Univ Cambridge, Dept Earth Sci, Downing St, Cambridge CB2 3EQ, England
[3] Diamond Light Source Ltd, Diamond House,Harwell Campus, Didcot OX11 0DE, Oxon, England
[4] Rutherford Appleton Lab, ISIS Facil, Harwell Campus, Didcot OX11 0QX, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
STABILITY; DETECTOR;
D O I
10.1021/jacs.9b07557
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-organic framework crystal-glass composites (MOF-CGCs) are materials in which a crystalline MOF is dispersed within a MOF glass. In this work, we explore the room-temperature stabilization of the open-pore form of MIL-53(Al), usually observed at high temperature, which occurs upon encapsulation within a ZIF-62(Zn) MOF glass matrix. A series of MOF-CGCs containing different loadings of MIL-53(Al) were synthesized and characterized using X-ray diffraction and nuclear magnetic resonance spectroscopy. An upper limit of MIL-53(Al) that can be stabilized in the composite was determined for the first time. The nanostructure of the composites was probed using pair distribution function analysis and scanning transmission electron microscopy. Notably, the distribution and integrity of the crystalline component in a sample series were determined, and these findings were related to the MOF-CGC gas adsorption capacity in order to identify the optimal loading necessary for maximum CO2 sorption capacity.
引用
收藏
页码:15641 / 15648
页数:8
相关论文
共 50 条
  • [21] Electrically Induced Breathing of the MIL-53(Cr) Metal-Organic Framework
    Ghoufi, Aziz
    Benhamed, Karima
    Boukli-Hacene, Leila
    Maurin, Guillaume
    ACS CENTRAL SCIENCE, 2017, 3 (05) : 394 - 398
  • [22] Structural transitions in the MIL-53(Al) metal-organic framework upon cryogenic hydrogen adsorption
    Mota, José P. B. (pmota@fct.unl.pt), 2017, American Chemical Society (121):
  • [23] Structural Transitions in the MIL-53(Al) Metal-Organic Framework upon Cryogenic Hydrogen Adsorption
    Mota, José P. B. (pmota@fct.unl.pt), 1600, American Chemical Society (121):
  • [24] Gas Chromatographic Study of a Composite Sorbent Based on Metal-Organic Framework MIL-53(Al)
    M. Yu. Pariichuk
    K. A. Kopytin
    L. A. Onuchak
    Yu. V. Martina
    Russian Journal of Physical Chemistry A, 2021, 95 : 806 - 811
  • [25] Selectively Trapping Ethane from Ethylene on Metal-Organic Framework MIL-53(Al)-FA
    Peng, Junjie
    Sun, Yiwei
    Wu, Ying
    Lv, Zhenqiang
    Li, Zhong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (19) : 8290 - 8295
  • [26] Gas Chromatographic Study of a Composite Sorbent Based on Metal-Organic Framework MIL-53(Al)
    Pariichuk, M. Yu.
    Kopytin, K. A.
    Onuchak, L. A.
    Martina, Yu. V.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 95 (04) : 806 - 811
  • [27] Role of Prenucleation Building Units in Determining Metal-Organic Framework MIL-53(Al) Morphology
    Embrechts, Heidemarie
    Kriesten, Martin
    Ermer, Matthias
    Peukert, Wolfgang
    Hartmann, Martin
    Distaso, Monica
    CRYSTAL GROWTH & DESIGN, 2020, 20 (06) : 3641 - 3649
  • [28] Ab Initio Parametrized Force Field for the Flexible Metal-Organic Framework MIL-53(Al)
    Vanduyfhuys, L.
    Verstraelen, T.
    Vandichel, M.
    Waroquier, M.
    Van Speybroeck, V.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) : 3217 - 3231
  • [29] Conditions for the Formation of Microporous Metal–Organic Framework Mil-53(Al)
    V. I. Isaeva
    V. V. Chernyshev
    A. L. Tarasov
    A. A. Lobova
    G. I. Kapustin
    N. A. Davshan
    Russian Journal of Physical Chemistry A, 2018, 92 : 2386 - 2390
  • [30] Metal-organic framework MIL-53(Al): synthesis, catalytic performance for the Friedel-Crafts acylation, and reaction mechanism
    Junlei Yan
    Sai Jiang
    Shengfu Ji
    Da Shi
    Hefei Cheng
    Science China(Chemistry), 2015, (10) : 1544 - 1552