Machine Learning Based Wafer Defect Detection

被引:6
|
作者
Ma, Yuansheng [2 ]
Wang, Feng [1 ]
Xie, Qian [1 ]
Hong, Le [2 ]
Mellmann, Joerg [2 ]
Sun, Yuyang [2 ]
Gao, Shao Wen [1 ]
Singh, Sonal [1 ]
Venkatachalam, Panneerselvam [1 ]
Word, James [2 ]
机构
[1] Globalfoundries, 400 Stone Break Extens, Malta, NY 12020 USA
[2] Mentor Graph Corp, 8005 SW Boeckman Rd, Wilsonville, OR 97070 USA
关键词
Machine learning; hot spot; Si verification; wafer inspection; ORC (optical rule check); process window;
D O I
10.1117/12.2513232
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Detecting and resolving the true on-wafer-hotspot (defect) is critical to improve wafers' yield in high volume manufacturing semiconductor foundries. As the integrated circuits process becomes more and more complex with the technology scaling, Optical Rule Check (ORC) alone could no longer identify the outlier-alike defects i.e. hot yield killer defects. Failing to detect yield-killer defects could be due to the lack of sufficient understanding and modeling in terms of etching, CMP, as well as other inter-layer process variations. In this paper, we present a fast and accurate defect detection flow with machine learning (ML) methodologies to address the compounding effects from different process stages. There are three parts in the defect detection ML model building flow: the first part is on the feature generation and data collection, the second on the ML model building, and the third on the full-chip prediction. We use limited amount of known defects found on wafer as input to train the ML model, and then apply the ML model to the full chip for prediction. The wafer verification data showed that our flow achieved more than 80% of defect hit rate with engineered feature extractions and ML model for an advanced technology node mask. The wafer results showed that machine learning has the capabilities of identifying new types of defects patterns and high-risk repetitive patterns such as SRAM.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Defect Detection in Oil and Gas Pipeline: A Machine Learning Application
    Chhotaray, Gitanjali
    Kulshreshtha, Anupam
    DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2018, VOL 2, 2019, 839 : 177 - 184
  • [42] Printed Circuit Board Defect Detection Methods Based on Image Processing, Machine Learning and Deep Learning: A Survey
    Ling, Qin
    Isa, Nor Ashidi Mat
    IEEE ACCESS, 2023, 11 : 15921 - 15944
  • [43] Subspace analysis based machine learning method for automated defect detection from fringe patterns
    Pandey, Dhruvam
    Ramaiah, Jagadesh
    Ajithaprasad, Sreeprasad
    Gannavarpu, Rajshekhar
    OPTIK, 2022, 270
  • [44] Defect Detection for 3D Through Silicon via Based on Machine Learning Approach
    Huang, Yu-Jung
    Pan, Chung-Long
    Guo, MeiHui
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2017, 9 (08) : 1175 - 1179
  • [45] Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing
    T. Herzog
    M. Brandt
    A. Trinchi
    A. Sola
    A. Molotnikov
    Journal of Intelligent Manufacturing, 2024, 35 : 1407 - 1437
  • [46] Deep-learning based machine vision system for defect detection of fiber interlock cable
    Chen, Zhaowei
    Holtz, Michael R.
    Vidourek, Samuel J.
    Alisafaee, Hossein
    APPLICATIONS OF MACHINE LEARNING 2021, 2021, 11843
  • [47] A novel feature extraction method of eddy current testing for defect detection based on machine learning
    Yin, Liyuan
    Ye, Bo
    Zhang, Zhaolin
    Tao, Yang
    Xu, Hanyang
    Avila, Jorge R. Salas
    Yin, Wuliang
    NDT & E INTERNATIONAL, 2019, 107
  • [48] Machine learning algorithms for defect detection in metal laser-based additive manufacturing: A review
    Fu, Yanzhou
    Downey, Austin R. J.
    Yuan, Lang
    Zhang, Tianyu
    Pratt, Avery
    Balogun, Yunusa
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 75 : 693 - 710
  • [49] Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing
    Herzog, T.
    Brandt, M.
    Trinchi, A.
    Sola, A.
    Molotnikov, A.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (04) : 1407 - 1437
  • [50] State of the Art in Defect Detection Based on Machine Vision
    Ren, Zhonghe
    Fang, Fengzhou
    Yan, Ning
    Wu, You
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2022, 9 (02) : 661 - 691