Fractal analysis and fuzzy c-means clustering for quantification of fibrotic microscopy images

被引:4
|
作者
Tasoulis, S. K. [1 ]
Maglogiannis, I. [2 ]
Plagianakos, V. P. [1 ]
机构
[1] Univ Cent Greece, Dept Comp Sci & Biomed Informat, Lamia 35100, Greece
[2] Univ Piraeus, Dept Digital Syst, Piraeus 18532, Greece
关键词
Image analysis; Cluster analysis; Fuzzy clustering; Fractal dimension; CHRONIC HEPATITIS-C; IDIOPATHIC PULMONARY-FIBROSIS; LIVER FIBROSIS; DIMENSION ESTIMATION; SEMIQUANTITATIVE INDEXES; INTERSTITIAL FIBROSIS; CLASSIFICATION; SEGMENTATION; VASECTOMY;
D O I
10.1007/s10462-013-9408-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The advances in improved fluorescent probes and better cameras in collaboration with the advent of computers in imaging and image analysis, assist the task of diagnosis in microscopy imaging. Based on such technologies, we introduce a computer-assisted image characterization tool based on fractal analysis and fuzzy clustering for the quantification of degree of the Idiopathic Pulmonary Fibrosis in microscopy images. The implementation of this algorithmic strategy proved very promising concerning the issue of the automated assessment of microscopy images of lung fibrotic regions against conventional classification methods that require training such as neural networks. Fractal dimension is an important image feature that can be associated with pathological fibrotic structures as is shown by our experimental results.
引用
收藏
页码:313 / 329
页数:17
相关论文
共 50 条
  • [41] Robust Weighted Fuzzy C-Means Clustering
    Hadjahmadi, A. H.
    Homayounpour, M. A.
    Ahadi, S. M.
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 305 - 311
  • [42] Soil clustering by fuzzy c-means algorithm
    Goktepe, AB
    Altun, S
    Sezer, A
    ADVANCES IN ENGINEERING SOFTWARE, 2005, 36 (10) : 691 - 698
  • [43] Gaussian Collaborative Fuzzy C-Means Clustering
    Gao, Yunlong
    Wang, Zhihao
    Li, Huidui
    Pan, Jinyan
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2021, 23 (07) : 2218 - 2234
  • [44] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    SOFT COMPUTING, 2010, 14 (05) : 487 - 494
  • [45] Study on combining subtractive clustering with fuzzy c-means clustering
    Liu, WY
    Xiao, CJ
    Wang, BW
    Shi, Y
    Fang, SF
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 2659 - 2662
  • [46] Analysis of density based and fuzzy c-means clustering methods on lesion border extraction in dermoscopy images
    Kockara, Sinan
    Mete, Mutlu
    Chen, Bernard
    Aydin, Kemal
    BMC BIOINFORMATICS, 2010, 11
  • [47] Analysis of density based and fuzzy c-means clustering methods on lesion border extraction in dermoscopy images
    Sinan Kockara
    Mutlu Mete
    Bernard Chen
    Kemal Aydin
    BMC Bioinformatics, 11
  • [48] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Yukihiro Hamasuna
    Yasunori Endo
    Sadaaki Miyamoto
    Soft Computing, 2010, 14 : 487 - 494
  • [49] UNSUPERVISED CHANGE DETECTION IN SATELLITE IMAGES USING FUZZY C-MEANS CLUSTERING AND PRINCIPAL COMPONENT ANALYSIS
    Kesikoglu, M. H.
    Atasever, U. H.
    Ozkan, C.
    ISPRS2013-SSG, 2013, 40-7-W2 : 129 - 132
  • [50] Analysis of density based and fuzzy c-means clustering methods on lesion border extraction in dermoscopy images
    Kockara, Sinan
    Mete, Mutlu
    Chen, Bernard
    Aydin, Kemal
    BMC Bioinformatics, 2010, 11 (SUPPL. 6)