scMoC: single-cell multi-omics clustering

被引:3
|
作者
Eltager, Mostafa [1 ]
Abdelaal, Tamim [1 ,2 ,3 ]
Mahfouz, Ahmed [1 ,2 ,4 ]
Reinders, Marcel J. T. [1 ,2 ]
机构
[1] Delft Univ Technol, Delft Bioinformat Lab, NL-2628XE Delft, Netherlands
[2] Leiden Univ Med Ctr, Leiden Computat Biol Ctr, NL-2333ZC Leiden, Netherlands
[3] Leiden Univ Med Ctr, Dept Radiol, Div Image Proc, NL-2333ZC Leiden, Netherlands
[4] Leiden Univ Med Ctr, Dept Human Genet, NL-2333ZC Leiden, Netherlands
来源
BIOINFORMATICS ADVANCES | 2022年 / 2卷 / 01期
基金
欧盟地平线“2020”;
关键词
D O I
10.1093/bioadv/vbac011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivation Single-cell multi-omics assays simultaneously measure different molecular features from the same cell. A key question is how to benefit from the complementary data available and perform cross-modal clustering of cells.Results We propose Single-Cell Multi-omics Clustering (scMoC), an approach to identify cell clusters from data with comeasurements of scRNA-seq and scATAC-seq from the same cell. We overcome the high sparsity of the scATAC-seq data by using an imputation strategy that exploits the less-sparse scRNA-seq data available from the same cell. Subsequently, scMoC identifies clusters of cells by merging clusterings derived from both data domains individually. We tested scMoC on datasets generated using different protocols with variable data sparsity levels. We show that scMoC (i) is able to generate informative scATAC-seq data due to its RNA-guided imputation strategy and (ii) results in integrated clusters based on both RNA and ATAC information that are biologically meaningful either from the RNA or from the ATAC perspective.Availability and implementation The data used in this manuscript is publicly available, and we refer to the original manuscript for their description and availability. For convience sci-CAR data is available at NCBI GEO under the accession number of GSE117089. SNARE-seq data is available at NCBI GEO under the accession number of GSE126074. The 10X multiome data is available at the following link https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-no-cell-sorting-3-k-1-standard-2-0-0.Supplementary information are available at Bioinformatics Advances online.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Application of single-cell multi-omics approaches in horticulture research
    Jun Zhang
    Mayra Ahmad
    Hongbo Gao
    Molecular Horticulture, 3
  • [42] Single-cell multi-omics in the medicinal plant Catharanthus roseus
    Chenxin Li
    Joshua C. Wood
    Anh Hai Vu
    John P. Hamilton
    Carlos Eduardo Rodriguez Lopez
    Richard M. E. Payne
    Delia Ayled Serna Guerrero
    Klaus Gase
    Kotaro Yamamoto
    Brieanne Vaillancourt
    Lorenzo Caputi
    Sarah E. O’Connor
    C. Robin Buell
    Nature Chemical Biology, 2023, 19 : 1031 - 1041
  • [43] Mitochondrial genetics through the lens of single-cell multi-omics
    Nitsch, Lena
    Lareau, Caleb A.
    Ludwig, Leif S.
    NATURE GENETICS, 2024, : 1355 - 1365
  • [44] Cancer Systems Biology in the Era of Single-Cell Multi-Omics
    Cheng, Hanjun
    Fan, Rong
    Wei, Wei
    PROTEOMICS, 2020, 20 (13)
  • [46] Spatial integration of multi-omics single-cell data with SIMO
    Penghui Yang
    Kaiyu Jin
    Yue Yao
    Lijun Jin
    Xin Shao
    Chengyu Li
    Xiaoyan Lu
    Xiaohui Fan
    Nature Communications, 16 (1)
  • [47] A mapping platform for mitotic crossover by single-cell multi-omics
    Chovanec, Peter
    Yin, Yi
    DNA REPLICATION-REPAIR INTERFACE, 2021, 661 : 183 - 204
  • [48] Single-cell multi-omics sequencing of human early embryos
    Li, Lin
    Guo, Fan
    Gao, Yun
    Ren, Yixin
    Yuan, Peng
    Yan, Liying
    Li, Rong
    Lian, Ying
    Li, Jingyun
    Hu, Boqiang
    Gao, Junpeng
    Wen, Lu
    Tang, Fuchou
    Qiao, Jie
    NATURE CELL BIOLOGY, 2018, 20 (07) : 847 - +
  • [49] Paired single-cell multi-omics data integration with Mowgli
    Geert-Jan Huizing
    Ina Maria Deutschmann
    Gabriel Peyré
    Laura Cantini
    Nature Communications, 14
  • [50] Computational Methods for Single-cell Multi-omics Integration and Alignment
    Stefan Stanojevic
    Yijun Li
    Aleksandar Ristivojevic
    Lana X.Garmire
    Genomics,Proteomics & Bioinformatics, 2022, Proteomics & Bioinformatics2022 (05) : 836 - 849