ON POLY-EULER NUMBERS

被引:10
|
作者
Ohno, Yasuo [1 ]
Sasaki, Yoshitaka [2 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
[2] Osaka Univ Hlth & Sport Sci, Liberal Arts Educ Ctr, Asashirodai 1-1, Kumatori, Osaka 5900496, Japan
关键词
Euler number; poly-Euler number; poly-Bernoulli number; Clausen-von Staudt theorem; BERNOULLI NUMBERS;
D O I
10.1017/S1446788716000495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Poly-Euler numbers are introduced as a generalization of the Euler numbers in a manner similar to the introduction of the poly-Bernoulli numbers. In this paper, some number-theoretic properties of poly-Euler numbers, for example, explicit formulas, a Clausen-von Staudt type formula, congruence relations and duality formulas, are given together with their combinatorial properties.
引用
收藏
页码:126 / 144
页数:19
相关论文
共 50 条
  • [41] EULER,LEONHARD CONVENIENT NUMBERS
    FREI, G
    MATHEMATICAL INTELLIGENCER, 1985, 7 (03): : 55 - &
  • [42] SUMS OF PRODUCTS OF EULER NUMBERS
    Wu, Ming
    Pan, Hao
    ARS COMBINATORIA, 2018, 136 : 341 - 346
  • [43] AN INTEGRAL REPRESENTATION FOR EULER NUMBERS
    BEESLEY, EM
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (04): : 389 - &
  • [44] Euler sums of hyperharmonic numbers
    Dil, Ayhan
    Boyadzhiev, Khristo N.
    JOURNAL OF NUMBER THEORY, 2015, 147 : 490 - 498
  • [45] On Stirling numbers and Euler sums
    Adamchik, V
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 79 (01) : 119 - 130
  • [46] Super congruences and Euler numbers
    SUN ZhiWei Department of Mathematics Nanjing University Nanjing China
    Science China(Mathematics), 2011, 54 (12) : 2509 - 2535
  • [47] Congruences modulo for Euler numbers
    Seki, Shin-ichiro
    RAMANUJAN JOURNAL, 2016, 40 (01): : 201 - 205
  • [48] Euler-Frobenius numbers
    Gawronski, Wolfgang
    Neuschel, Thorsten
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (10) : 817 - 830
  • [49] Milnor numbers and Euler obstruction
    Seade, J
    Tibar, M
    Verjovsky, A
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2005, 36 (02): : 275 - 283
  • [50] SIGN OF BERNOULLI AND EULER NUMBERS
    CARLITZ, L
    SCOVILLE, R
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (05): : 548 - 549