Approximating viability kernels with support vector machines

被引:29
|
作者
Deffuant, Guillaume [1 ]
Chapel, Laetitia [1 ]
Martin, Sophie [1 ]
机构
[1] Irstea, Lab Ingn Syst Complexes, F-63172 Aubiere, France
关键词
dynamical systems; optimal control; support vector machines (SVMs); viability kernel;
D O I
10.1109/TAC.2007.895881
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose an algorithm which performs a progressive approximation of a viability kernel, iteratively using a classification method. We establish the mathematical conditions that the classification method should fulfill to guarantee the convergence to the actual viability kernel. We study more particularly the use of support vector machines (SVMs) as classification techniques. We show that they make possible to use gradient optimisation techniques to find a viable control at each time step, and over several time steps. This allows us to avoid the exponential growth of the computing time with the dimension of the control space. It also provides simple and efficient control procedures. We illustrate the method with some examples inspired from ecology.
引用
收藏
页码:933 / 937
页数:5
相关论文
共 50 条
  • [1] Tangent distance kernels for support vector machines
    Haasdonk, B
    Keysers, D
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 864 - 868
  • [2] SUPPORT VECTOR MACHINES (SVMs) WITH UNIVERSAL KERNELS
    Zanaty, E. A.
    Afifi, Ashraf
    APPLIED ARTIFICIAL INTELLIGENCE, 2011, 25 (07) : 575 - 589
  • [3] Heuristics for kernels adaptation in support vector machines
    Saavedra, E
    Renners, I
    Grauel, A
    Morton, D
    Convey, HJ
    APPLICATIONS AND SCIENCE IN SOFT COMPUTING, 2004, : 249 - 254
  • [4] A Note on Support Vector Machines with Polynomial Kernels
    Tong, Hongzhi
    NEURAL COMPUTATION, 2016, 28 (01) : 71 - 88
  • [5] Axiomatic Kernels on Graphs for Support Vector Machines
    Orchel, Marcin
    Suykens, Johan A. K.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 685 - 700
  • [6] Support Vector Machines and Kernels for Computational Biology
    Ben-Hur, Asa
    Ong, Cheng Soon
    Sonnenburg, Soeren
    Schoelkopf, Bernhard
    Raetsch, Gunnar
    PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (10)
  • [7] Training of support vector machines with mahalanobis kernels
    Abe, SG
    ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 571 - 576
  • [8] Fast Support Vector Machines for Structural Kernels
    Severyn, Aliaksei
    Moschitti, Alessandro
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 175 - 190
  • [9] Support vector machines based on scaling kernels
    Li, Z
    Zhou, WD
    Jiao, LC
    2002 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I AND II, 2002, : 1142 - 1145
  • [10] Understanding Support Vector Machines with Polynomial Kernels
    Vinge, Rikard
    McKelvey, Tomas
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,