Successive coefficients for spirallike and related functions

被引:10
|
作者
Arora, Vibhuti [1 ]
Ponnusamy, Saminathan [2 ]
Sahoo, Swadesh Kumar [1 ]
机构
[1] Indian Inst Technol Indore, Discipline Math, Khandwa Rd, Indore 453552, Madhya Pradesh, India
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Convex functions; Close-to-convex functions; Starlike functions; Spirallike functions; Successive coefficients; INEQUALITY;
D O I
10.1007/s13398-019-00664-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the family of all analytic and univalent functions in the unit disk of the form f (z) = z + a2z2 + a3z3 + center dot center dot center dot. Our objective in this paper is to estimate the difference of the moduli of successive coefficients, that is vertical bar an+ 1 vertical bar - vertical bar an vertical bar , for f belonging to the family of. - spirallike functions of order a. Our particular results include the case of starlike and convex functions of order a and other related class of functions.
引用
收藏
页码:2969 / 2979
页数:11
相关论文
共 50 条
  • [31] Initial Successive Coefficients for Certain Classes of Univalent Functions
    Arora, Vibhuti
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (08) : 2080 - 2091
  • [32] Initial Successive Coefficients for Certain Classes of Univalent Functions
    Vibhuti Arora
    Lobachevskii Journal of Mathematics, 2022, 43 : 2080 - 2091
  • [33] THE ESTIMATE OF THE DIFFERENCE OF INITIAL SUCCESSIVE COEFFICIENTS OF UNIVALENT FUNCTIONS
    Peng, Zhigang
    Obradovic, Milutin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (02): : 301 - 314
  • [34] SUCCESSIVE COEFFICIENTS AND TOEPLITZ DETERMINANT FOR CONCAVE UNIVALENT FUNCTIONS
    Bhowmik, Bappaditya
    John, Alana
    Parveen, Firdoshi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (02): : 459 - 460
  • [35] The Norm Estimates of Pre-Schwarzian Derivatives of Spirallike Functions and Uniformly Convex alpha-spirallike Functions
    Orouji, Zahra
    Aghalary, Rasul
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2018, 12 (01): : 89 - 96
  • [36] Correspondence between spirallike functions and starlike functions
    Kim, Yong Chan
    Sugawa, Toshiyuki
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (2-3) : 322 - 331
  • [37] Further Results for α-Spirallike Functions of Order β
    Hesam Mahzoon
    Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 1085 - 1089
  • [38] Coefficient Estimates Of Functions In The Class Concerning With Spirallike Functions
    Hamai, Kensei
    Hayami, Toshio
    Kuroki, Kazuo
    Owa, Shigeyoshi
    APPLIED MATHEMATICS E-NOTES, 2011, 11 : 189 - 196
  • [39] Harmonic spirallike functions and harmonic strongly starlike functions
    Xiu-Shuang Ma
    Saminathan Ponnusamy
    Toshiyuki Sugawa
    Monatshefte für Mathematik, 2022, 199 : 363 - 375
  • [40] Quasiconformal Extension of Strongly Spirallike Functions
    Sugawa, Toshiyuki
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2012, 12 (01) : 19 - 30