Matched field source localization with Gaussian processes

被引:27
|
作者
Michalopoulou, Zoi-Heleni [1 ]
Gerstoft, Peter [2 ]
Caviedes-Nozal, Diego [3 ]
机构
[1] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[2] Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
[3] Tech Univ Denmark, Dept Elect Engn, Acoust Technol, DK-2800 Lyngby, Denmark
来源
JASA EXPRESS LETTERS | 2021年 / 1卷 / 06期
关键词
D O I
10.1121/10.0005069
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
For a sparsely observed acoustic field, Gaussian processes can predict a densely sampled field on the array. The prediction quality depends on the choice of a kernel and a set of hyperparameters. Gaussian processes are applied to source localization in the ocean in combination with matched-field processing. Compared to conventional processing, the denser sampling of the predicted field across the array reduces the ambiguity function sidelobes. As the noise level increases, the Gaussian process-based processor has a distinctly higher probability of correct localization than conventional processing, due to both denoising and denser field prediction.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Broad-band matched-field source localization in the East China Sea
    Zhang, RH
    Li, ZL
    Yan, J
    Peng, ZH
    Li, FH
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2004, 29 (04) : 1049 - 1054
  • [42] UNDERWATER SOURCE LOCALIZATION USING CYLINDRICAL HYDROPHONE ARRAY AND RIEMANNIAN MATCHED FIELD PROCESSING
    Tran Cao Quyen
    AKUSTIKA, 2022, 42 : 7 - 13
  • [43] Stochastic matched-field localization of an acoustic source based on principles of Riemannian geometry
    Finette, Steven
    Mignerey, Peter C.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 143 (06): : 3628 - 3638
  • [44] Adaptive Matched Field Processing for Source Localization Using Improved Diagonal Loading Algorithm
    Phu Ninh Tran
    Khanh Dang Trinh
    ACOUSTICS AUSTRALIA, 2017, 45 (02): : 325 - 330
  • [45] Matched-field source localization using the flank array of unmanned underwater vehicle
    Zhao, De-Xin
    Li, Ting
    Huang, Zhi-Ping
    Su, Shao-Jing
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2013, 40 (08): : 76 - 82
  • [46] Gaussian Processes for Underdetermined Source Separation
    Liutkus, Antoine
    Badeau, Roland
    Richard, Gaeel
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (07) : 3155 - 3167
  • [47] Matched multipath source localization in deep ocean
    He, Shaoyin
    Liu, Yudong
    International Conference on Signal Processing Proceedings, ICSP, 1998, 2 : 1431 - 1434
  • [48] Matched multipath source localization in deep ocean
    He, SY
    Liu, YD
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 1431 - 1434
  • [49] Quantitative ambiguity analysis for matched-field source localization under spatially-correlated noise field
    Xu, W
    Richmond, CD
    OCEANS 2003 MTS/IEEE: CELEBRATING THE PAST...TEAMING TOWARD THE FUTURE, 2003, : 922 - 927
  • [50] Conditionally Gaussian Hypermodels for Cerebral Source Localization
    Calvetti, Daniela
    Hakula, Harri
    Pursiainen, Sampsa
    Somersalo, Erkki
    SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (03): : 879 - 909