Asymptotic velocity for four celestial bodies

被引:1
|
作者
Knauf, Andreas [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2018年 / 376卷 / 2131期
关键词
asymptotic velocity; celestial mechanics; scattering theory; NONCOLLISION SINGULARITIES; GRAVITATIONAL SYSTEMS; NEWTONIAN SYSTEMS; EXISTENCE;
D O I
10.1098/rsta.2017.0426
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Asymptotic velocity is defined as the Cesaro limit of velocity. As such, its existence has been proved for bounded interaction potentials. This is known to be wrong in celestial mechanics with four or more b o d Here, we show for n class of pair potentials including the homogeneous ones of degree -alpha for alpha is an element of (0,2), that asymptotic velocities exist for up to tour bodies, dimension three or larger, for any energy and almost all initial conditions on the energy surface. This article is part of the theme issue 'Finite dimensional integrable systems: new trends and methods'.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Celestial mechanics of elastic bodies
    Beig, Robert
    Schmidt, Bernd G.
    MATHEMATISCHE ZEITSCHRIFT, 2008, 258 (02) : 381 - 394
  • [32] THEORY OF SUPERDENSE CELESTIAL BODIES
    GRIGORIAN, LS
    SAHAKIAN, GS
    ASTRONOMICHESKII ZHURNAL, 1979, 56 (05): : 1030 - 1036
  • [33] ASYMPTOTIC LIMIT OF THE FORM-FACTOR-ALPHA AND FORM-FACTOR-BETA PRODUCT FOR CELESTIAL BODIES
    FERRONSKY, VI
    DENISIK, SA
    FERRONSKY, SV
    CELESTIAL MECHANICS, 1979, 20 (01): : 69 - 81
  • [34] Celestial holography: An asymptotic symmetry perspective
    Donnay, Laura
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1073 : 1 - 41
  • [35] Dynamics of the rigid bodies and celestial mechanics
    Grioli, G
    WASCOM 2003: 12TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA, PROCEEDINGS, 2004, : 269 - 274
  • [36] Celestial Mechanics of Rubble Pile Bodies
    Scheeres, Daniel J.
    SATELLITE DYNAMICS AND SPACE MISSIONS, 2019, 34 : 225 - 256
  • [37] Celestial mechanics of elastic bodies II
    Beig, Robert
    Schmidt, Bernd G.
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (08)
  • [38] REVOLUTIONS OF CELESTIAL BODIES - FRENCH - COPERNICUS
    BOIREL, R
    ETUDES PHILOSOPHIQUES, 1971, (03): : 368 - 369
  • [39] CELESTIAL BODIES How to look at ballet
    Dumitrescu, Irina
    TLS-THE TIMES LITERARY SUPPLEMENT, 2019, (6044): : 3 - 4
  • [40] Massive celestial amplitudes and celestial amplitudes beyond four points
    Liu, Reiko
    Ma, Wen-Jie
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (01):