A critical exponent for shortest-path scaling in continuum percolation

被引:2
|
作者
Brereton, Tim [1 ]
Hirsch, Christian [1 ]
Schmidt, Volker [1 ]
Kroese, Dirk [2 ]
机构
[1] Univ Ulm, Inst Stochast, D-89069 Ulm, Germany
[2] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
percolation; chemical distance; Monte Carlo; splitting; power law; continuum percolation; POWER-LAW DISTRIBUTIONS; PRECISE DETERMINATION; PAIR CONNECTEDNESS; CLUSTER-SIZE; THRESHOLD;
D O I
10.1088/1751-8113/47/50/505003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We carry out Monte Carlo experiments to study the scaling behavior of shortest path lengths in continuum percolation. These studies suggest that the critical exponent governing this scaling is the same for both continuum and lattice percolation. We use splitting, a technique that has not yet been fully exploited in the physics literature, to increase the speed of our simulations. This technique can also be applied to other models where clusters are grown sequentially.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Exact critical exponent for the shortest-path scaling function in percolation
    Ziff, RM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (43): : L457 - L459
  • [2] Pair connectedness and shortest-path scaling in critical percolation
    Grassberger, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (35): : 6233 - 6238
  • [3] SCALING OF THE SHORTEST-PATH AGGREGATION
    WANG, XR
    PHYSICAL REVIEW A, 1989, 40 (11): : 6767 - 6770
  • [4] Shortest-Path Percolation on Random Networks
    Kim, Minsuk
    Radicchi, Filippo
    Physical Review Letters, 2024, 133 (04)
  • [5] DISTRIBUTION OF SHORTEST-PATH LENGTHS IN PERCOLATION ON A HIERARCHICAL LATTICE
    BARMA, M
    RAY, P
    PHYSICAL REVIEW B, 1986, 34 (05): : 3403 - 3407
  • [6] Shortest-path fractal dimension for percolation in two and three dimensions
    Zhou, Zongzheng
    Yang, Ji
    Deng, Youjin
    Ziff, Robert M.
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [7] FLORY CALCULATION OF THE FRACTAL DIMENSIONALITY OF THE SHORTEST-PATH IN A PERCOLATION CLUSTER
    ROUX, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (07): : L395 - L397
  • [8] Percolation Analyses in a Swarm Based Algorithm for Shortest-path Finding
    Velloso, Bruno Panerai
    Roisemberg, Mauro
    APPLIED COMPUTING 2008, VOLS 1-3, 2008, : 1861 - 1865
  • [9] Percolation threshold, Fisher exponent, and shortest path exponent for four and five dimensions
    Paul, G
    Ziff, RM
    Stanley, HE
    PHYSICAL REVIEW E, 2001, 64 (02):
  • [10] The Routing Continuum from Shortest-path to All-path: A Unifying Theory
    Li, Yanhua
    Zhang, Zhi-Li
    Boley, Daniel
    31ST INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2011), 2011, : 847 - 856