Pair connectedness and shortest-path scaling in critical percolation

被引:24
|
作者
Grassberger, P [1 ]
机构
[1] Forschungszentrum Julich, NIC, D-52425 Julich, Germany
来源
关键词
D O I
10.1088/0305-4470/32/35/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present high statistics data on the distribution of shortest path lengths between two near-by points on the same cluster at the percolation threshold. Our data are based on a new and very efficient algorithm. For d = 2 they clearly disprove a recent conjecture by M Porto et al 1998 Phys. Rev. E 58 R5205. Our data also provide upper bounds on the probability that two near-by points, are on different infinite clusters.
引用
收藏
页码:6233 / 6238
页数:6
相关论文
共 50 条
  • [1] A critical exponent for shortest-path scaling in continuum percolation
    Brereton, Tim
    Hirsch, Christian
    Schmidt, Volker
    Kroese, Dirk
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (50)
  • [2] Exact critical exponent for the shortest-path scaling function in percolation
    Ziff, RM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (43): : L457 - L459
  • [3] Knapsack: Connectedness, Path, and Shortest-Path
    Dey, Palash
    Kolay, Sudeshna
    Singh, Sipra
    [J]. LATIN 2024: THEORETICAL INFORMATICS, PT II, 2024, 14579 : 162 - 176
  • [4] SCALING OF THE SHORTEST-PATH AGGREGATION
    WANG, XR
    [J]. PHYSICAL REVIEW A, 1989, 40 (11): : 6767 - 6770
  • [5] DISTRIBUTION OF SHORTEST-PATH LENGTHS IN PERCOLATION ON A HIERARCHICAL LATTICE
    BARMA, M
    RAY, P
    [J]. PHYSICAL REVIEW B, 1986, 34 (05): : 3403 - 3407
  • [6] SCALING OF THE PAIR CONNECTEDNESS FOR SITE DIRECTED PERCOLATION
    DASILVA, JKL
    DROZ, M
    [J]. HELVETICA PHYSICA ACTA, 1985, 58 (06): : 1041 - 1048
  • [7] Shortest-path fractal dimension for percolation in two and three dimensions
    Zhou, Zongzheng
    Yang, Ji
    Deng, Youjin
    Ziff, Robert M.
    [J]. PHYSICAL REVIEW E, 2012, 86 (06):
  • [8] FLORY CALCULATION OF THE FRACTAL DIMENSIONALITY OF THE SHORTEST-PATH IN A PERCOLATION CLUSTER
    ROUX, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (07): : L395 - L397
  • [9] Percolation Analyses in a Swarm Based Algorithm for Shortest-path Finding
    Velloso, Bruno Panerai
    Roisemberg, Mauro
    [J]. APPLIED COMPUTING 2008, VOLS 1-3, 2008, : 1861 - 1865
  • [10] SCALING THEORY FOR PAIR-CONNECTEDNESS IN PERCOLATION MODELS
    DUNN, AG
    ESSAM, JW
    LOVELUCK, JM
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1975, 8 (06): : 743 - 750