3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror

被引:122
|
作者
Sun, Jingjing [1 ]
Guo, Shuguang [1 ]
Wu, Lei [1 ]
Liu, Lin [1 ]
Choe, Se-Woon [2 ]
Sorg, Brian S. [2 ]
Xie, Huikai [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[2] Univ Florida, J Crayton Pruitt Family Dept Biomed Engn, Gainesville, FL 32611 USA
来源
OPTICS EXPRESS | 2010年 / 18卷 / 12期
基金
美国国家科学基金会;
关键词
BARRETTS-ESOPHAGUS; MICROACTUATOR; CATHETER; ANGLE;
D O I
10.1364/OE.18.012065
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
3D in vivo optical imaging on a mouse has been obtained using a 2D MEMS mirror for lateral scanning in a time-domain optical coherence tomography (OCT) system. The MEMS mirror aperture size is 1 x 1 mm(2), and the device footprint is 2 x 2 mm(2). The MEMS mirror scans +/- 30 degrees optical angles about both x and y-axis at only 5.5V DC voltage. An endoscopic probe with an outer diameter of 5.8 mm has been designed, manufactured and packaged. The probe scans an average transverse area of 2 mm x 2 mm. The imaging speed of the probe is about 2.5 frames per second, limited by the speed of the employed optical delay line. (C) 2010 Optical Society of America
引用
收藏
页码:12065 / 12075
页数:11
相关论文
共 50 条
  • [21] Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source
    Song, Shaozhen
    Xu, Jingjiang
    Wang, Ruikang K.
    BIOMEDICAL OPTICS EXPRESS, 2016, 7 (11): : 4734 - 4748
  • [22] Low contrast target detection based on 2D/3D range-gated imaging
    Wang, Xinwei, 1600, Chinese Society of Astronautics (43):
  • [23] 3D printing of the choroidal vessels and tumours based on optical coherence tomography
    Maloca, Peter M.
    Tufail, Adnan
    Hasler, Pascal W.
    Rothenbuehler, Simon
    Egan, Catherine
    de Carvalho, J. Emanuel Ramos
    Spaide, Richard F.
    ACTA OPHTHALMOLOGICA, 2019, 97 (02) : E313 - E316
  • [24] Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror
    Kumar, Karthik
    Condit, Jonathan C.
    McElroy, Austin
    Kemp, Nate J.
    Hoshino, Kazunori
    Milner, Thomas E.
    Zhang, Xiaojing
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2008, 10 (04):
  • [25] 3D imaging of human skin - Optical in vivo tomography and topology by short coherence interferometry
    Bail, M
    Eigensee, A
    Hausler, G
    Herrmann, JM
    Lindner, MW
    COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICAL SCIENCE AND CLINICAL APPLICATIONS, PROCEEDINGS OF, 1997, 2981 : 64 - 75
  • [26] Durable ex vivo mouse retina 3D tissue models for optical coherence tomography
    Barroso, Alvaro
    Heiduschka, Peter
    Nettels-Hackert, Gerburg
    Ketelhut, Steffi
    del Amor, Rocio
    Garcia-Torres, Fernando
    Morales-Martinez, Sandra
    Naranjo, Valery
    Kemper, Bjoern
    Schnekenburger, Juergen
    LABEL-FREE BIOMEDICAL IMAGING AND SENSING, LBIS 2024, 2024, 12854
  • [27] Durable 3D murine ex vivo retina glaucoma models for optical coherence tomography
    Barroso, Alvaro
    Ketelhut, Steffi
    Nettels-Hackert, Gerburg
    Heiduschka, Peter
    Del Amor, Rocio
    Naranjo, Valery
    Kemper, Bjorn
    Schnekenburger, Jurgen
    BIOMEDICAL OPTICS EXPRESS, 2023, 14 (09) : 4421 - 4438
  • [28] 3D Image Registration Based Atlas for Large Field of View Human Eye Optical Coherence Tomography
    Khansari, Maziyar
    Choupan, Jeiran
    Stiles, Noelle
    Kashani, Amir H.
    Patel, Vivek
    Shi, Yonggang
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (09)
  • [29] Speckle noise reduction for optical coherence tomography based on adaptive 2D dictionary
    Lv, Hongli
    Fu, Shujun
    Zhang, Caiming
    Zhai, Lin
    LASER PHYSICS LETTERS, 2018, 15 (05)
  • [30] Combined intracoronary 2D–3D optical coherence tomography and intravascular ultrasound imaging in left main severe stent malapposition
    Cerrato E.
    Biagioni C.
    Jimenez-Quevedo P.
    Nuñez-Gil I.J.
    Gonzalo N.
    Escaned J.
    Cardiovascular Intervention and Therapeutics, 2018, 33 (3) : 288 - 290