String Submodular Functions With Curvature Constraints

被引:35
|
作者
Zhang, Zhenliang [1 ,2 ]
Chong, Edwin K. P. [1 ]
Pezeshki, Ali [1 ]
Moran, William [3 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[2] Qualcomm Flar Technol, Bridgewater, NJ 08807 USA
[3] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
基金
美国国家科学基金会;
关键词
Combinatorial optimization; greedy; matroid; optimal control; FUNCTION SUBJECT; SET-FUNCTIONS; MAXIMIZATION; APPROXIMATIONS; ALGORITHMS; OPTIMALITY; MATROIDS; BOUNDS;
D O I
10.1109/TAC.2015.2440566
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consider the problem of choosing a string of actions to optimize an objective function that is string submodular. It was shown in previous papers that the greedy strategy, consisting of a string of actions that only locally maximizes the step-wise gain in the objective function, achieves at least a (1 -e(-1))-approximation to the optimal strategy. This paper improves this approximation by introducing additional constraints on curvature, namely, total backward curvature, total forward curvature, and elemental forward curvature. We show that if the objective function has total backward curvature sigma, then the greedy strategy achieves at least a (1/ sigma)(1 - e(-sigma))-approximation of the optimal strategy. If the objective function has total forward curvature epsilon, then the greedy strategy achieves at least a (1 - epsilon)-approximation of the optimal strategy. Moreover, we consider a generalization of the diminishing-return property by defining the elemental forward curvature. We also introduce the notion of string-matroid and consider the problem of maximizing the objective function subject to a string-matroid constraint. We investigate two applications of string submodular functions with curvature constraints: 1) choosing a string of actions to maximize the expected fraction of accomplished tasks; and 2) designing a string of measurement matrices such that the information gain is maximized.
引用
收藏
页码:601 / 616
页数:16
相关论文
共 50 条
  • [21] DECOMPOSITION OF SUBMODULAR FUNCTIONS
    CUNNINGHAM, WH
    COMBINATORICA, 1983, 3 (01) : 53 - 68
  • [22] Submodular partition functions
    Amini, Omid
    Mazoit, Frederic
    Nisse, Nicolas
    Thomasse, Stephan
    DISCRETE MATHEMATICS, 2009, 309 (20) : 6000 - 6008
  • [23] Submodular functions and optimization
    Fujishige, S.
    Frank, A.
    ZOR. Zeitschrift Fuer Operations Research, 1994, 40 (03):
  • [24] Streaming algorithms for maximizing the difference of submodular functions and the sum of submodular and supermodular functions
    Cheng Lu
    Wenguo Yang
    Suixiang Gao
    Optimization Letters, 2023, 17 : 1643 - 1667
  • [25] Maximizing Submodular Functions under Matroid Constraints by Multi-objective Evolutionary Algorithms
    Friedrich, Tobias
    Neumann, Frank
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 922 - 931
  • [26] Hom functions and submodular Boolean functions
    Ekin, O
    Hammer, PL
    Peled, UN
    THEORETICAL COMPUTER SCIENCE, 1997, 175 (02) : 257 - 270
  • [27] Optimal Pricing for Submodular Valuations with Bounded Curvature
    Maehara, Takanori
    Kawase, Yasushi
    Sumita, Hanna
    Tono, Katsuya
    Kawarabayashi, Ken-ichi
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 622 - 628
  • [28] Submodular Minimization Under Congruency Constraints
    Nagele, Martin
    Sudakov, Benny
    Zenklusen, Rico
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 849 - 866
  • [29] Choquet representability of submodular functions
    Chateauneuf, Alain
    Cornet, Bernard
    MATHEMATICAL PROGRAMMING, 2018, 168 (1-2) : 615 - 629
  • [30] Ranking with submodular functions on a budget
    Zhang, Guangyi
    Tatti, Nikolaj
    Gionis, Aristides
    DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 36 (03) : 1197 - 1218