Global majority consensus by local majority polling on graphs of a given degree sequence

被引:29
|
作者
Abdullah, Mohammed Amin [1 ]
Draief, Moez [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
关键词
Local majority; Consensus; Social networks; Distributed computing;
D O I
10.1016/j.dam.2014.07.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose in a graph G vertices can be either red or blue. Let k be odd. At each time step, each vertex v in G polls k random neighbours and takes the majority colour. If it does not have k neighbours, it simply polls all of them, or all less one if the degree of v is even. We study this protocol on graphs of a given degree sequence, in the following setting: initially each vertex of G is red independently with probability alpha < 1/2, and is otherwise blue. We show that if a is sufficiently biased, then with high probability consensus is reached on the initial global majority within O(log(k) log(k) n) steps if 5 <= k <= d, and O(log(d) log(d) n) steps if k > d. Here, d >= 5 is the effective minimum degree, the smallest integer which occurs Theta(n) times in the degree sequence. We further show that on such graphs, any local protocol in which a vertex does not change colour if all its neighbours have that same colour, takes time at least Omega (log(d) log(d) n), with high probability. Additionally, we demonstrate how the technique for the above sparse graphs can be applied in a straightforward manner to get bounds for the Erdos-Renyi random graphs in the connected regime. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 49 条
  • [41] Smallest domination number and largest independence number of graphs and forests with given degree sequence
    Gentner, Michael
    Henning, Michael A.
    Rautenbach, Dieter
    JOURNAL OF GRAPH THEORY, 2018, 88 (01) : 131 - 145
  • [42] Asynchronous binary byzantine consensus over graphs with power-law degree sequence
    Weldehawaryat, Goitom
    Wolthusen, Stephen
    IFIP Advances in Information and Communication Technology, 2014, 441 : 263 - 276
  • [43] ASYNCHRONOUS BINARY BYZANTINE CONSENSUS OVER GRAPHS WITH POWER-LAW DEGREE SEQUENCE
    Weldehawaryat, Goitom
    Wolthusen, Stephen
    CRITICAL INFRASTRUCTURE PROTECTION VIII, 2014, 441 : 263 - 276
  • [44] Civil alcohol policy in Muslim majority countries: need for global tools, expert support and local partnerships
    Al-Ansari, Basma
    Day, Carolyn A.
    Thow, Anne-Marie
    Conigrave, Katherine M.
    ADDICTION, 2016, 111 (10) : 1718 - 1719
  • [45] A local average broadcast gossip algorithm for fast global consensus over graphs
    Wang, Gang
    Wang, Zhiyue
    Wu, Jie
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2017, 109 : 301 - 309
  • [46] MAINTAINING LOCAL PUBLIC HEALTH IN THE GLOBAL CONTEXT: A SUSTAINABLE IMMIGRANT HEALTH SCREENING SYSTEM IN A STATE WITH AN IMMIGRANT MAJORITY
    Harrison, O.
    Ahmed, F.
    Hosani, F. A. I.
    Al Mannaie, A.
    JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2011, 65 : A407 - A407
  • [47] Activity patterns on random scale-free networks: global dynamics arising from local majority rules
    Zhou, Haijun
    Lipowsky, Reinhard
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [48] Extremal Properties of Graphs and Eigencentrality in Trees with a Given Degree Sequence (vol 34, pg 115, 2010)
    Grassi, Rosanna
    Stefani, Silvana
    Torriero, Anna
    JOURNAL OF MATHEMATICAL SOCIOLOGY, 2011, 35 (04): : 312 - 313
  • [49] A local switch Markov chain on given degree graphs with application in connectivity of peer-to-peer networks
    Feder, Tomas
    Guetz, Adam
    Mihail, Milena
    Saberi, Amin
    47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 69 - +