Quantum Modeling of Hydrogen Retention in Beryllium Bulk and Vacancies

被引:50
|
作者
Allouche, A. [1 ,2 ]
Oberkofler, M. [3 ]
Reinelt, M. [3 ]
Linsmeier, Ch. [3 ]
机构
[1] CNRS, F-13397 Marseille 20, France
[2] Univ Aix Marseille 1, F-13397 Marseille 20, France
[3] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2010年 / 114卷 / 08期
关键词
SUPERABUNDANT VACANCIES; DEUTERIUM RELEASE; ATOMS; SOLUBILITY; MOLECULES; DIFFUSION; GRAPHITE; SURFACES; BEHAVIOR; TUNGSTEN;
D O I
10.1021/jp910806j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Numerous experiments have been Performed In the past few years oil solid hydride deposition under beryllium-seeded plasma action or oil energetic hydrogen implantation into metallic beryllium. This article reports oil calculations carried out Using first-principles density functional theory (DFT) and discusses the results with respect to thermal desorption experiments. The structures of amorphous beryllium hydride were investigated for various H/Be ratios. They were compared to the structure of the organized BeH2 crystal as a test for the validity of this model. The formation and reactivity of atomic vacancies were also investigated, together with atomic hydrogen trapping. Hints are proposed for hydrogen detrapping mechanisms.
引用
收藏
页码:3588 / 3598
页数:11
相关论文
共 50 条
  • [21] First-Principles Study of hydrogen retention and diffusion in beryllium oxide
    Allouche, A.
    Ferro, Y.
    SOLID STATE IONICS, 2015, 272 : 91 - 100
  • [22] BULK HYDROGEN RETENTION IN GRAPHITE AT ELEVATED-TEMPERATURE
    TANABE, T
    ATSUMI, H
    JOURNAL OF NUCLEAR MATERIALS, 1994, 209 (01) : 109 - 112
  • [23] Thermodynamic analysis of the interaction between metal vacancies and hydrogen in bulk Cu
    Fotopoulos, Vasileios
    Grau-Crespo, Ricardo
    Shluger, Alexander L.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (13) : 9168 - 9175
  • [24] Quantum Modeling of Water and Oxygen Adsorption on Beryllium Surface
    Allouche, A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (07): : 4662 - 4670
  • [25] On the influence of vacancies on the electronic properties of beryllium
    Bakai, A. S.
    Timoshevkii, A. N.
    Kalkuta, S. A.
    Moeslang, A.
    Vladimirov, V. P.
    LOW TEMPERATURE PHYSICS, 2007, 33 (10) : 889 - 891
  • [26] Vacancies, interstitials and gas atoms in beryllium
    Ganchenkova, M. G.
    Vladimirov, P. V.
    Borodin, V. A.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 386-88 : 79 - 81
  • [27] Investigation of hydrogen isotope retention mechanisms in beryllium: High resolution TPD measurements
    Eichler, Michael
    NUCLEAR MATERIALS AND ENERGY, 2019, 19 : 440 - 444
  • [28] Data on erosion and hydrogen fuel retention in Beryllium plasma-facing materials
    De Temmerman, Gregory
    Heinola, Kalle
    Borodin, Dmitriy
    Brezinsek, Sebastijan
    Doerner, Russell P.
    Rubel, Marek
    Fortuna-Zalesna, Elzbieta
    Linsmeier, Christian
    Nishijima, Daisuke
    Nordlund, Kai
    Probst, Michael
    Romazanov, Juri
    Safi, Elnaz
    Schwarz-Selinger, Thomas
    Widdowson, Anna
    Braams, Bastiaan J.
    Chung, Hyun-Kyung
    Hill, Christian
    NUCLEAR MATERIALS AND ENERGY, 2021, 27
  • [29] Retention of hydrogen isotopes in beryllium by simultaneous H+ and D+ irradiation
    Tsuchiya, B
    Morita, K
    JOURNAL OF NUCLEAR MATERIALS, 1997, 248 : 42 - 45
  • [30] Grand canonical approach to modeling hydrogen trapping at vacancies in α-Fe
    Davidson, E. R. M.
    Daff, T.
    Csanyi, G.
    Finnis, M. W.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (06)