Power Demand Forecasting Using Stochastic Model: Parameter Estimation

被引:0
|
作者
Ma, Ruihong [1 ]
Wu, Rentao [2 ]
Khanwala, Mustafa A. [3 ]
Li, Dan [4 ]
Dang, Shuping [5 ]
机构
[1] Henan Danfeng Technol Co Ltd, Zhengzhou 450001, Peoples R China
[2] Univ Edinburgh, Inst Energy Syst, Edinburgh EH9 3DW, Midlothian, Scotland
[3] UCL, Sch Mech Engn, London WC1E 7JE, England
[4] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3LE, England
[5] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
关键词
parameter estimation; power demand forecasting; stochastic model;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Since it was first proposed, the new method of power demand forecasting using a stochastic model has been greatly talked about in the scientific community and increasing number of practical applications are being developed, since it is a simple and effective approach to forecast power demand within a small time interval. However, the relevant literature still assumes that all statistic parameters can be estimated perfectly and this assumption might not always be applicable. In this paper, we propose to use a shift register array to estimate these parameters. Using analysis techniques and factoring the length of the array we can then increase the precision in the estimated results. The precision of these results was proven using simulations, the results of which have also been documented here.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Segmented Power Demand Forecasting Using Stochastic Model
    Feng, Xue
    Wang, Bowen
    Wu, Rentao
    Khanwala, Mustafa A.
    Dang, Shuping
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON FLUID POWER AND MECHATRONICS - FPM 2015, 2015, : 1374 - 1377
  • [2] Parameter estimation of a demand forecasting function associated with the behavior of weed using genetic algorithm
    Sterzo, Marinna S.
    Cruvinel, Paulo E.
    2017 11TH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2017, : 452 - 458
  • [3] Evaluation of Terrain Parameter Estimation using a Stochastic Terrain Model
    Dumond, Danielle A.
    Ray, Laura E.
    Trautmann, Eric
    UNMANNED SYSTEMS TECHNOLOGY XI, 2009, 7332
  • [4] Parameter estimation for stochastic SIR model
    Li, Shuang
    Xiong, Jie
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [5] Demand forecasting in power distribution systems using nonparametric probability density estimation
    Charytoniuk, W
    Chen, MS
    Kotas, P
    Van Olinda, P
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1999, 14 (04) : 1200 - 1206
  • [6] STOCHASTIC-MODEL OF POWER DEMAND
    KORN, I
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING-SECTION A ELECTRICAL POWER AND INFORMATION SYSTEMS, 1978, 3 (01): : 29 - 38
  • [7] Stochastic OD demand estimation using stochastic programming
    Sun, Ran
    Fan, Yueyue
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2024, 183
  • [8] Distributed Demand Side Management with Stochastic Wind Power Forecasting
    Department of Electrical and Information Engineering, Polytechnic University of Bari, Bari
    70125, Italy
    不详
    CD 2628, Netherlands
    IEEE Trans Control Syst Technol, 2022, 1 (97-112):
  • [9] Parameter Estimation of Seasonal Arima Models for Water Demand Forecasting using the Harmony Search Algorithm
    Oliveira, Paulo Jose
    Steffen, Jorge Luiz
    Cheung, Peter
    XVIII INTERNATIONAL CONFERENCE ON WATER DISTRIBUTION SYSTEMS, WDSA2016, 2017, 186 : 177 - 185
  • [10] Distributed Demand Side Management With Stochastic Wind Power Forecasting
    Scarabaggio, Paolo
    Grammatico, Sergio
    Carli, Raffaele
    Dotoli, Mariagrazia
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (01) : 97 - 112