Entrapment of Water at the Transmembrane Helix-Helix Interface of Quiescin Sulfhydryl Oxidase 2

被引:5
|
作者
Ried, Christian L. [1 ,2 ]
Scharnagl, Christina [3 ]
Langosch, Dieter [1 ,2 ]
机构
[1] Tech Univ Munich, Lehrstuhl Chem Biopolymere, Weihenstephaner Berg 3, D-85354 Freising Weihenstephan, Germany
[2] Munich Ctr Integrated Prot Sci CIPSM, Munich, Germany
[3] Tech Univ Munich, Fak Phys E14, Maximus von Imhof Forum 4, D-85354 Freising Weihenstephan, Germany
关键词
MEMBRANES; ASSOCIATION; PROTEIN; DOMAIN; DIMERIZATION; MOTIFS;
D O I
10.1021/acs.biochem.5b01239
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Little is known about how a membrane can regulate interactions between transmembrane helices. Here, we show that strong self-interaction of the transmembrane helix of human quiescin sulfhydryl oxidase 2 rests on a motif of conserved amino acids comprising one face of the helix. Atomistic molecular dynamics simulations suggest that water molecules enter the helix helix interface and connect serine residues of both partner helices. In addition, an interfacial tyrosine can interact with noninterfacial water or lipid. Dimerization of this trans membrane helix might therefore be controlled by membrane properties controlling water permeation and/or by the lipid composition of the membrane.
引用
收藏
页码:1287 / 1290
页数:4
相关论文
共 50 条
  • [31] The effect of the sequence of hydrophobic helices on the stabtlity of transmembrane insertion and helix-helix interaction in membranes
    Caputo, GA
    Lew, S
    London, E
    BIOPHYSICAL JOURNAL, 2001, 80 (01) : 524A - 524A
  • [32] Single-Molecule FRET Detection of GXXXG-Mediated Transmembrane Helix-Helix Interactions
    Yano, Yoshiaki
    Kondo, Kotaro
    Matsuzaki, Katsumi
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 500A - 500A
  • [33] Balancing Force Field Protein-Lipid Interactions To Capture Transmembrane Helix-Helix Association
    Domanski, Jan
    Sansom, Mark S. P.
    Stansfeld, Phillip J.
    Best, Robert B.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (03) : 1706 - 1715
  • [34] Helix-helix interactions between transmembrane α-helices 3 and 4 within the cystic fibrosis transmembrane conductance regulator protein
    Partridge, AW
    Deber, CM
    PEPTIDES FOR THE NEW MILLENNIUM, 2000, : 379 - 380
  • [35] The affinity of GXXXG motifs in transmembrane helix-helix interactions is modulated by long-range communication
    Melnyk, RA
    Kim, S
    Curran, AR
    Engelman, DM
    Bowie, JU
    Deber, CM
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (16) : 16591 - 16597
  • [36] Evidence for role of transmembrane helix-helix interactions in the assembly of the Class II major histocompatibility complex
    King, Gavin
    Dixon, Ann M.
    MOLECULAR BIOSYSTEMS, 2010, 6 (09) : 1650 - 1661
  • [37] From interactions of single transmembrane helices to folding of α-helical membrane proteins:: Analyzing transmembrane helix-helix interactions in bacteria
    Schneider, Dirk
    Finger, Carmen
    Prodoehl, Alexander
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2007, 8 (01) : 45 - 61
  • [38] Charge-Charge Interactions Promote Transmembrane Helix-Helix Association Depending on Sequence Context
    Langosch, Dieter
    Herrmann, Jana
    Fuchs, Angelika
    Panitz, Johanna
    Unterreitmeier, Stephanie
    Frishman, Dmitrij
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 643A - 643A
  • [39] Hydrophobic mismatch and sequence specificity compete when transmembrane helix-helix interactions are measured with the TOXCAT assay
    Hellmann, Nadja
    Schneider, Dirk
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [40] Evolution by Engineering: Amino Acid Substitutions at the Conserved Helix-Helix Interface of Cytochrome c
    Doyle, D. F.
    Pielak, G. J.
    Auid, D. S.
    Beasley, J. R.
    Protein Engineering, 8