Functionalizing micro-3D-printed protein hydrogels for cell adhesion and patterning

被引:19
|
作者
Hernandez, D. S. [1 ]
Ritschdorff, E. T. [1 ]
Seidlits, S. K. [2 ]
Schmidt, C. E. [3 ]
Shear, J. B. [1 ]
机构
[1] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Univ Florida, Dept Biomed Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
MULTIPHOTON LITHOGRAPHY; GEOMETRIC CONTROL; TOPOGRAPHY; GRADIENTS; SURFACES;
D O I
10.1039/c5tb02070k
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The extracellular matrix has been shown to profoundly influence both cell morphology and numerous cellular processes - including adhesion, differentiation, and alignment - through a range of chemical, mechanical, and topographical features. In these studies, we investigate a versatile platform for functionalizing micro-3D-printed (mu-3DP) protein hydrogels via multiphoton excitation of benzophenone-biotin, a photoactivatable ligand capable of reacting with the hydrogel matrix, which is subsequently linked to a biotinylated cell-adhesive peptide through a NeutrAvidin (R) bridge. This functionalization strategy is potentially applicable to a broad range of hydrogel platforms, enabling biomolecules to be precisely patterned at specified locations within 3D materials. As proof-of-concept of this strategy's utility, we demonstrate that chemical modifications can be made to m-3DP protein hydrogels that enable Schwann cells to be patterned without altering the mechanical or topographical properties of the hydrogel to an extent that influences SC cell adhesion. The ability to independently control potential cellular cues within in vitro cellular microenvironments is essential to investigating decoupled effects of biomaterial properties on cell-matrix interactions. In addition, we demonstrate feasibility for generating arbitrary immobilized chemical gradient profiles, a result that opens important opportunities for understanding and controlling haptotactic behaviors, such as directed migration, that are key to various tissue regeneration applications.
引用
收藏
页码:1818 / 1826
页数:9
相关论文
共 50 条
  • [21] An imidazolium-based supramolecular gelator enhancing interlayer adhesion in 3D printed dual network hydrogels
    Zhou, Zuoxin
    Samperi, Mario
    Santu, Lea
    Dizon, Glenieliz
    Aboarkaba, Shereen
    Limon, David
    Tuck, Christopher
    Perez-Garcia, Lluisa
    Irvine, Derek J.
    Amabilino, David B.
    Wildman, Ricky
    MATERIALS & DESIGN, 2021, 206
  • [22] 3D Printed Sugar-Sensing Hydrogels
    Bruen, Danielle
    Delaney, Colm
    Chung, Johnson
    Ruberu, Kalani
    Wallace, Gordon G.
    Diamond, Dermot
    Florea, Larisa
    MACROMOLECULAR RAPID COMMUNICATIONS, 2020, 41 (09)
  • [23] Current Biomedical Applications of 3D-Printed Hydrogels
    Barcena, Allan John R.
    Dhal, Kashish
    Patel, Parimal
    Ravi, Prashanth
    Kundu, Suprateek
    Tappa, Karthik
    GELS, 2024, 10 (01)
  • [24] 3D Printed Hydrogels for Ocular Wound Healing
    Aghamirsalim, Mohamadreza
    Mobaraki, Mohammadmahdi
    Soltani, Madjid
    Shahvandi, Mohammad Kiani
    Jabbarvand, Mahmoud
    Afzali, Elham
    Raahemifar, Kaamran
    BIOMEDICINES, 2022, 10 (07)
  • [25] 3D printed architected conducting polymer hydrogels
    Jordan, Robert S.
    Frye, Jacob
    Hernandez, Victor
    Prado, Isabel
    Giglio, Adrian
    Abbasizadeh, Nastaran
    Flores-Martinez, Miguel
    Shirzad, Kiana
    Xu, Bohao
    Hill, Ian M.
    Wang, Yue
    JOURNAL OF MATERIALS CHEMISTRY B, 2021, 9 (35) : 7258 - 7270
  • [26] On the progress of 3D-printed hydrogels for tissue engineering
    Advincula, Rigoberto C.
    Dizon, John Ryan C.
    Caldona, Eugene B.
    Viers, Robert Andrew
    Siacor, Francis Dave C.
    Maalihan, Reymark D.
    Espera, Alejandro H., Jr.
    MRS COMMUNICATIONS, 2021, 11 (05) : 539 - 553
  • [27] On the progress of 3D-printed hydrogels for tissue engineering
    Rigoberto C. Advincula
    John Ryan C. Dizon
    Eugene B. Caldona
    Robert Andrew Viers
    Francis Dave C. Siacor
    Reymark D. Maalihan
    Alejandro H. Espera
    MRS Communications, 2021, 11 : 539 - 553
  • [28] 3D Printed Polymeric Hydrogels for Nerve Regeneration
    Maiti, Binoy
    Diaz Diaz, David
    POLYMERS, 2018, 10 (09):
  • [29] Controlling cell shape on hydrogels using lift-off protein patterning
    Moeller, Jens
    Denisin, Aleksandra K.
    Sim, Joo Yong
    Wilson, Robin E.
    Ribeiro, Alexandre J. S.
    Pruitt, Beth L.
    PLOS ONE, 2018, 13 (01):
  • [30] 3D printed micro-optics
    Saulius Juodkazis
    Nature Photonics, 2016, 10 : 499 - 501