A Real-Time Object Tracking model based on Deeper Siamese Network

被引:0
|
作者
Zou, Qijie [1 ]
Zhang, Yue [1 ]
Liu, Shihui [1 ]
Yu, Jing [1 ]
机构
[1] Dalian Univ, Informat Engn Coll, Dalian, Peoples R China
关键词
deep Siamese network; visual tracking; multi-layer aggregation; deep learning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Siamese networks have obtained widespread attention in the field of visual tracking. In this paper, we propose a high-performance model based on a deep Siamese network (SiamFC-R22) for real-time visual tracking. In response to the problem that most existing Siamese trackers cannot take advantage of the more abundant feature representation provided by deep networks, we construct a deep backbone network architecture with reasonable receptive field and stride by stacking redesigned residual modules. Furthermore, we propose a multi-layer aggregation module (MLA) to fuse a series of features effectively of different layers. MLA consists of the RAC branch and the IL branch. RAC is used to boost the ability to learn the representation of high-level semantic features. IL is applied to capture the better expression of low-level features that contain more detailed information. The comprehensive experiments on the OTB2015 benchmark illustrate that our proposed SiamFC-R22 achieves an AUC of 0.667. Meanwhile, it runs at over 60 frames per second, exceeding state-of-the-art competitors with significant advantages.
引用
收藏
页码:1089 / 1094
页数:6
相关论文
共 50 条
  • [1] Real-Time Object Tracking Algorithm Based on Siamese Network
    Zhao, Wenjun
    Deng, Miaolei
    Cheng, Cong
    Zhang, Dexian
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [2] A Twofold Siamese Network for Real-Time Object Tracking
    He, Anfeng
    Luo, Chong
    Tian, Xinmei
    Zeng, Wenjun
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4834 - 4843
  • [3] A Siamese Network for real-time object tracking on CPU
    Xing, Daitao
    Evangeliou, Nikolaos
    Tsoukalas, Athanasios
    Tzes, Anthony
    SOFTWARE IMPACTS, 2022, 12
  • [4] Accurate Positioning Siamese Network for Real-Time Object Tracking
    Zhou, Lijun
    Yao, Xuwen
    Zhang, Jianlin
    IEEE ACCESS, 2019, 7 : 84209 - 84216
  • [5] A Siamese-Detection Network for Real-Time Object Tracking
    Deng, Yang
    Xie, Ning
    Yang, Yang
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1669 - 1674
  • [6] Correction to: Real-time object tracking in the wild with Siamese network
    Feng Han
    Shaokui Jiang
    Jianmin Wu
    Baile Xu
    Jian Zhao
    Furao Shen
    Multimedia Tools and Applications, 2023, 82 (16) : 24345 - 24345
  • [7] Hierarchical correlation siamese network for real-time object tracking
    Meng, Yu
    Deng, Zaixu
    Zhao, Kun
    Xu, Yan
    Liu, Hao
    APPLIED INTELLIGENCE, 2021, 51 (06) : 3202 - 3211
  • [8] Similarity perception siamese network for real-time object tracking
    Xi Jiaqi
    Wang Yi
    Cai Huaiyu
    Chen Xiaodong
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY VIII, 2021, 11897
  • [9] Siamese Transformer Network for Real-Time Aerial Object Tracking
    Wang, Haijun
    Zhang, Shengyan
    IEEE ACCESS, 2022, 10 : 105201 - 105213
  • [10] Hierarchical correlation siamese network for real-time object tracking
    Yu Meng
    Zaixu Deng
    Kun Zhao
    Yan Xu
    Hao Liu
    Applied Intelligence, 2021, 51 : 3202 - 3211