Similarity perception siamese network for real-time object tracking

被引:0
|
作者
Xi Jiaqi [1 ]
Wang Yi [1 ]
Cai Huaiyu [1 ]
Chen Xiaodong [1 ]
机构
[1] Tianjin Univ, Sch Precis Instruments & Optoelect Engn, Key Lab Photoelect Informat, Minist Educ, Tianjin 300072, Peoples R China
关键词
Similarity Perception; Real-Time Object Tracking; Siamese Network; Squeeze and Excitation; Residual Structures;
D O I
10.1117/12.2601150
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Improving the accuracy while maintaining the real-time performance of object tracking is a major challenge for computer vision field. In this paper, an improved Similarity-Perception-Siamese (SP-Siam) network tracking algorithm based on SiamFC is proposed. The algorithm introduces squeeze-and-excitation (SE) block and residual network for similarity map based on Siamese network, adaptively recalibrates the channel characteristic response of similarity map between target and the search inputs by explicitly modeling the interdependence between channels. This study also verifies the network performance on Object Tracking Benchmark (OTB) tracking datasets. The experimental results show that the squeeze-and-excitation block of similarity map has brought significant performance improvement to the existing Siamese network at slight additional computational cost achieved the goal of improving network performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A Twofold Siamese Network for Real-Time Object Tracking
    He, Anfeng
    Luo, Chong
    Tian, Xinmei
    Zeng, Wenjun
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4834 - 4843
  • [2] A Siamese Network for real-time object tracking on CPU
    Xing, Daitao
    Evangeliou, Nikolaos
    Tsoukalas, Athanasios
    Tzes, Anthony
    [J]. SOFTWARE IMPACTS, 2022, 12
  • [3] Correction to: Real-time object tracking in the wild with Siamese network
    Feng Han
    Shaokui Jiang
    Jianmin Wu
    Baile Xu
    Jian Zhao
    Furao Shen
    [J]. Multimedia Tools and Applications, 2023, 82 (16) : 24345 - 24345
  • [4] Accurate Positioning Siamese Network for Real-Time Object Tracking
    Zhou, Lijun
    Yao, Xuwen
    Zhang, Jianlin
    [J]. IEEE ACCESS, 2019, 7 : 84209 - 84216
  • [5] A Siamese-Detection Network for Real-Time Object Tracking
    Deng, Yang
    Xie, Ning
    Yang, Yang
    [J]. 2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1669 - 1674
  • [6] Hierarchical correlation siamese network for real-time object tracking
    Meng, Yu
    Deng, Zaixu
    Zhao, Kun
    Xu, Yan
    Liu, Hao
    [J]. APPLIED INTELLIGENCE, 2021, 51 (06) : 3202 - 3211
  • [7] Real-Time Object Tracking Algorithm Based on Siamese Network
    Zhao, Wenjun
    Deng, Miaolei
    Cheng, Cong
    Zhang, Dexian
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [8] Siamese Transformer Network for Real-Time Aerial Object Tracking
    Wang, Haijun
    Zhang, Shengyan
    [J]. IEEE ACCESS, 2022, 10 : 105201 - 105213
  • [9] Hierarchical correlation siamese network for real-time object tracking
    Yu Meng
    Zaixu Deng
    Kun Zhao
    Yan Xu
    Hao Liu
    [J]. Applied Intelligence, 2021, 51 : 3202 - 3211
  • [10] A Real-Time Object Tracking model based on Deeper Siamese Network
    Zou, Qijie
    Zhang, Yue
    Liu, Shihui
    Yu, Jing
    [J]. PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 1089 - 1094