Method for Aspect-Based Sentiment Annotation Using Rhetorical Analysis

被引:2
|
作者
Augustyniak, Lukasz [1 ]
Rajda, Krzysztof [2 ]
Kajdanowicz, Tomasz [1 ]
机构
[1] Wroclaw Univ Technol, Dept Computat Intelligence, Wroclaw, Poland
[2] Kenaz Technol, Leszno, Poland
关键词
Sentiment analysis; Opinion mining; Aspect-based sentiment analysis; Rhetorical analysis; Rhetorical Structure Theory;
D O I
10.1007/978-3-319-54472-4_72
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper fills a gap in aspect-based sentiment analysis and aims to present a new method for preparing and analysing texts concerning opinion and generating user-friendly descriptive reports in natural language. We present a comprehensive set of techniques derived from Rhetorical Structure Theory and sentiment analysis to extract aspects from textual opinions and then build an abstractive summary of a set of opinions. Moreover, we propose aspect-aspect graphs to evaluate the importance of aspects and to filter out unimportant ones from the summary. Additionally, the paper presents a prototype solution of data flow with interesting and valuable results. The proposed method's results proved the high accuracy of aspect detection when applied to the gold standard dataset.
引用
收藏
页码:772 / 781
页数:10
相关论文
共 50 条
  • [41] Aspect Is Not You Need: No-aspect Differential Sentiment Framework for Aspect-based Sentiment Analysis
    Cao, Jiahao
    Liu, Rui
    Peng, Huailiang
    Jiang, Lei
    Bai, Xu
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 1599 - 1609
  • [42] Review-Level Aspect-Based Sentiment Analysis Using an Ontology
    de Kok, Sophie
    Punt, Linda
    van den Puttelaar, Rosita
    Ranta, Karoliina
    Schouten, Kim
    Frasincar, Flavius
    33RD ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2018, : 315 - 322
  • [43] Aspect-based sentiment analysis using deep networks and stochastic optimization
    Kumar, Ravindra
    Pannu, Husanbir Singh
    Malhi, Avleen Kaur
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08): : 3221 - 3235
  • [44] Aspect-based Sentiment Analysis to Review Products Using Naive Bayes
    Mubarok, Mohamad Syahrul
    Adiwijaya
    Aldhi, Muhammad Dwi
    INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION: EMPOWERING ENGINEERING USING MATHEMATICS, 2017, 1867
  • [45] Aspect-Based Rating Prediction on Reviews Using Sentiment Strength Analysis
    Wang, Yinglin
    Huang, Yi
    Wang, Ming
    ADVANCES IN ARTIFICIAL INTELLIGENCE: FROM THEORY TO PRACTICE (IEA/AIE 2017), PT II, 2017, 10351 : 439 - 447
  • [46] Aspect-based sentiment analysis using smart government review data
    Alqaryouti, Omar
    Siyam, Nur
    Monem, Azza Abdel
    Shaalan, Khaled
    APPLIED COMPUTING AND INFORMATICS, 2024, 20 (1/2) : 142 - 161
  • [47] Aspect-Based Sentiment Analysis Using Attribute Extraction of Hospital Reviews
    Ankita Bansal
    Niranjan Kumar
    New Generation Computing, 2022, 40 : 941 - 960
  • [48] Aspect-Based Sentiment Quantification
    Matsiiako, Vladyslav
    Frasincar, Flavius
    Boekestijn, David
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (04) : 1718 - 1729
  • [49] Aspect-Based Sentiment Analysis Using Adversarial BERT with Capsule Networks
    Peng Yang
    Penghui Zhang
    Bing Li
    Shunhang Ji
    Meng Yi
    Neural Processing Letters, 2023, 55 : 8041 - 8058
  • [50] Lexicon Generation Using Genetic Algorithm For Aspect-Based Sentiment Analysis
    Mowlaei, Mohammad Erfan
    Abadeh, Mohammad Saniee
    Keshavarz, Hamidreza
    2018 IEEE 22ND INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS (INES 2018), 2018, : 133 - 137