Some multivariate singular unified skew-normal distributions and their application

被引:1
|
作者
Amiri, Mehdi [1 ]
Jamalizadeh, Ahad [2 ]
Towhidi, Mina [1 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Stat, Shiraz, Iran
[2] Shahid Bahonar Univ Kerman, Fac Math & Comp, Dept Stat, Kerman, Iran
关键词
Truncated distribution; Singular unified skew-normal distribution; Order statistics; Mean past life time; Mean residual life time; DEPENDENT RANDOM-VARIABLES; LINEAR-COMBINATIONS; ORDER-STATISTICS;
D O I
10.1080/03610926.2013.875575
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce here the truncated version of the unified skew-normal (SUN) distributions. By considering a special truncations for both univariate and multivariate cases, we derive the joint distribution of consecutive order statistics X-(r,X- ...,X- r + k) = (X-(r), ..., X(r + K))(T) from an exchangeable n-dimensional normal random vector X. Further we show that the conditional distributions of X-(r + j,X- ...,X- r + k) given X-(r,X- ...,X- r + j - 1), X-(r,X- ...,X- r + k) given (X-(r) > t)and X((r, ..., r + k))given (X(r + k) < t) are special types of singular SUN distributions. We use these results to determine some measures in the reliability theory such as the mean past life (MPL) function and mean residual life (MRL) function.
引用
收藏
页码:2159 / 2171
页数:13
相关论文
共 50 条
  • [21] Conjugate Bayes for probit regression via unified skew-normal distributions
    Durante, Daniele
    [J]. BIOMETRIKA, 2019, 106 (04) : 765 - 779
  • [22] Multivariate extreme models based on underlying skew-t and skew-normal distributions
    Padoan, Simone A.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (05) : 977 - 991
  • [23] On the multivariate extended skew-normal, normal-exponential, and normal-gamma distributions
    Adcock C.J.
    Shutes K.
    [J]. Journal of Statistical Theory and Practice, 2012, 6 (4) : 636 - 664
  • [24] Properties and Limiting Forms of the Multivariate Extended Skew-Normal and Skew-Student Distributions
    Adcock, Christopher J.
    [J]. STATS, 2022, 5 (01): : 270 - 311
  • [25] Goodness-of-Fit Tests for Bivariate and Multivariate Skew-Normal Distributions
    Meintanis, Simos G.
    Hlavka, Zdenek
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (04) : 701 - 714
  • [26] On Moments of Folded and Doubly Truncated Multivariate Extended Skew-Normal Distributions
    Galarza Morales, Christian E.
    Matos, Larissa A.
    Dey, Dipak K.
    Lachos, Victor H.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (02) : 455 - 465
  • [27] Kullback-Leibler Divergence Measure for Multivariate Skew-Normal Distributions
    Contreras-Reyes, Javier E.
    Arellano-Valle, Reinaldo B.
    [J]. ENTROPY, 2012, 14 (09) : 1606 - 1626
  • [28] Some stochastic orderings of multivariate skew-normal random vectors
    Li, Xueyan
    Yin, Chuancun
    [J]. AIMS MATHEMATICS, 2023, 8 (10): : 23427 - 23441
  • [29] A class of multivariate skew-normal models
    Arjun K. Gupta
    John T. Chen
    [J]. Annals of the Institute of Statistical Mathematics, 2004, 56 : 305 - 315
  • [30] Multivariate geometric skew-normal distribution
    Kundu, Debasis
    [J]. STATISTICS, 2017, 51 (06) : 1377 - 1397