The decomposition of peroxynitrite does not yield nitroxyl anion and singlet oxygen

被引:29
|
作者
Merényi, G
Lind, J
Czapski, G
Goldstein, S
机构
[1] Royal Inst Technol, Dept Chem, S-10044 Stockholm 70, Sweden
[2] Hebrew Univ Jerusalem, Dept Phys Chem, IL-91904 Jerusalem, Israel
关键词
D O I
10.1073/pnas.150238197
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a recent article [Khan, A. U., Kovacic, D., Kolbanovsky, A., Desai, M., Frenkel, K. & Geacintov, N, E. (2000) Proc. Natl. Acad. Sci. USA 97, 2984-2989], the authors claimed that ONOO-, after protonation to ONOOH, decomposes into (HNO)-H-1 and O-1(2) according to a spin-conserved unimolecular mechanism. This claim was based partially on their observation that nitrosylhemoglobin is formed via the reaction of peroxynitrite with methemoglobin at neutral pH. However, thermochemical considerations show that the yields of O-1(2) and (HNO)-H-1 are about 23 orders of magnitude lower than those of (NO2)-N-. and (OH)-O-., which are formed via the homolysis of ONOOH. We also show that methemoglobin does not form with peroxynitrite any spectrally detectable product, but with contaminations of nitrite and H2O2 present in the peroxynitrite sample. Thus, there is no need to modify the present view of the mechanism of ONOOH decomposition, according to which initial homolysis into a radical pair, [(ONOOH)-O-..](cage), is followed by the diffusion of about 30% of the radicals out of the cage, while the rest recombines to nitric acid in the solvent cage.
引用
收藏
页码:8216 / 8218
页数:3
相关论文
共 50 条
  • [31] Detection of Singlet Oxygen and Superoxide Anion with the Fluorescence of FCLA
    Wei Yan-chun
    Luo Shi-ming
    Xu Wei
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28 (11) : 2633 - 2635
  • [32] The reaction of peroxynitrite with tert-butyl hydroperoxide produces singlet molecular oxygen
    Di Mascio, P
    Briviba, K
    Sasaki, ST
    Catalani, LH
    Medeiros, MHG
    Bechara, EJH
    Sies, H
    [J]. BIOLOGICAL CHEMISTRY, 1997, 378 (09) : 1071 - 1074
  • [33] SINGLET MOLECULAR-OXYGEN PRODUCTION IN THE REACTION OF PEROXYNITRITE WITH HYDROGEN-PEROXIDE
    DI MASCIO, P
    BECHARA, EJH
    MEDEIROS, MHG
    BRIVIBA, K
    SIES, H
    [J]. FEBS LETTERS, 1994, 355 (03) : 287 - 289
  • [34] QUANTITATIVE GENERATION OF SINGLET ((1)DELTA(G)) OXYGEN FROM ACIDIFIED AQUEOUS PEROXYNITRITE PRODUCED BY THE REACTION OF NITRIC-OXIDE AND SUPEROXIDE ANION
    KHAN, AU
    [J]. JOURNAL OF BIOLUMINESCENCE AND CHEMILUMINESCENCE, 1995, 10 (06): : 329 - 333
  • [35] DOES DISPROPORTIONATION OF SUPEROXIDE PRODUCE SINGLET OXYGEN
    BARLOW, GE
    BISBY, RH
    CUNDALL, RB
    [J]. RADIATION PHYSICS AND CHEMISTRY, 1979, 13 (1-2): : 73 - 75
  • [36] Scavenging or Quenching Effect of Melanin on Superoxide Anion and Singlet Oxygen
    Tada, Mika
    Kohno, Masahiro
    Niwano, Yoshimi
    [J]. JOURNAL OF CLINICAL BIOCHEMISTRY AND NUTRITION, 2010, 46 (03) : 224 - 228
  • [37] CHEMILUMINESCENCE BY GRANULOCYTES - ROLE OF MYELOPEROXIDASE, SINGLET OXYGEN AND SUPEROXIDE ANION
    ROSEN, H
    KLEBANOFF, SJ
    [J]. CLINICAL RESEARCH, 1976, 24 (03): : A353 - A353
  • [38] Generation of singlet oxygen by decomposition of triphenyl phosphite ozonide
    Liu, M
    Shen, GL
    Yang, HP
    Sha, GH
    Zhang, CH
    [J]. CHINESE JOURNAL OF CHEMICAL PHYSICS, 2004, 17 (02) : 113 - 115
  • [40] A high sensitivity detection method of singlet oxygen and superoxide anion
    Hao, M
    Xing, D
    Chen, Q
    Wang, J
    [J]. CHINESE CHEMICAL LETTERS, 2004, 15 (06) : 679 - 682