Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa

被引:149
|
作者
Buskin, Adriana [1 ]
Zhu, Lili [1 ]
Chichagova, Valeria [1 ]
Basu, Basudha [2 ]
Mozaffari-Jovin, Sina [3 ]
Dolan, David [4 ]
Droop, Alastair [5 ]
Collin, Joseph [1 ]
Bronstein, Revital [6 ]
Mehrotra, Sudeep [6 ]
Farkas, Michael [7 ,8 ]
Hilgen, Gerrit [9 ]
White, Kathryn [10 ]
Pan, Kuan-Ting [3 ]
Treumann, Achim [11 ]
Hallam, Dean [1 ]
Bialas, Katarzyna [1 ]
Chung, Git [12 ]
Mellough, Carla [1 ]
Ding, Yuchun [13 ]
Krasnogor, Natalio [13 ]
Przyborski, Stefan [4 ]
Zwolinski, Simon [1 ]
Al-Aama, Jumana [14 ]
Alharthi, Sameer [14 ]
Xu, Yaobo [1 ]
Wheway, Gabrielle [15 ]
Szymanska, Katarzyna [2 ]
McKibbin, Martin [2 ]
Inglehearn, Chris F. [2 ]
Elliott, David J. [1 ]
Lindsay, Susan [1 ]
Ali, Robin R. [16 ]
Steel, David H. [1 ]
Armstrong, Lyle [1 ]
Sernagor, Evelyne [9 ]
Urlaub, Henning [17 ]
Pierce, Eric [6 ]
Luehrmann, Reinhard [3 ]
Grellscheid, Sushma-Nagaraja [4 ,18 ]
Johnson, Colin A. [2 ]
Lako, Majlinda [1 ]
机构
[1] Newcastle Univ, Inst Med Genet, Cent Pkwy, Newcastle Upon Tyne NE1 3BZ, Tyne & Wear, England
[2] Univ Leeds, St Jamess Univ Hosp, Leeds Inst Med Res, Beckett St, Leeds LS9 7TF, W Yorkshire, England
[3] Max Planck Inst Biophys Chem, Dept Cellular Biochem, Fassberg 11, D-37077 Gottingen, Germany
[4] Univ Durham, Dept Biol Sci, South Rd, Durham DH1 3LE, England
[5] Univ Leeds, MRC Med Bioinformat Ctr, Clarendon Way, Leeds LS2 9JT, W Yorkshire, England
[6] Mass Eye & Ear & Harvard Med Sch, Ocular Genom Inst, 243 Charles St, Boston, MA 02114 USA
[7] SUNY Buffalo, Jacobs Sch Med & Biomed Sci, Dept Ophthalmol, 955 Main St, Buffalo, NY 14203 USA
[8] SUNY Buffalo, Jacobs Sch Med & Biomed Sci, Dept Biochem, 955 Main St, Buffalo, NY 14203 USA
[9] Newcastle Univ, Med Sch, Inst Neurosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[10] Newcastle Univ, Med Sch, Electron Microscopy Res Serv, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[11] Newcastle Univ, Med Sch, Inst Cell & Mol Biosci, Catherine Cookson Bldg,Framlington Pl, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[12] NUPPA, Devonshire Bldg,Devonshire Terrace, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[13] Newcastle Univ, Sch Comp, Interdisciplinary Comp & Complex Biosyst ICOS Res, Urban Sci Bldg,1 Sci Sq, Newcastle Upon Tyne NE4 5TG, Tyne & Wear, England
[14] King Abdulaziz Univ, Princess Al Jawhara Al Brahim Ctr Excellence Res, 7393 Al Malaeb St, Jeddah 22252, Saudi Arabia
[15] Univ W England, Ctr Res Biosci, Frenchay Campus,Coldharbour Lane, Bristol BS16 1QY, Avon, England
[16] UCL Inst Ophthalmol, 11-43 Bath St, London EC1V 9EL, England
[17] Max Planck Inst Biophys Chem, Bioanalyt Mass Spectrometry Grp, Fassberg 11, D-37077 Gottingen, Germany
[18] Univ Bergen, Dept Biol Sci, Computat Biol Unit, Thormohlensgt 55, N-5008 Bergen, Norway
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
EPITHELIUM-DERIVED FACTOR; TARGETED MOUSE MODELS; IN-VIVO; MUTATIONS; EXPRESSION; CELLS; PROTEIN; SECRETION; FAMILIES; HOMOLOG;
D O I
10.1038/s41467-018-06448-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause nonsyndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31-mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as Prpf31(+/-) mouse tissues, which revealed that disrupted alternative splicing occurred for specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins was limited to patient-specific retinal cells and Prpf31(+/-) mouse retinae and RPE. Mis-splicing of genes implicated in ciliogenesis and cellular adhesion was associated with severe RPE defects that include disrupted apical - basal polarity, reduced trans-epithelial resistance and phagocytic capacity, and decreased cilia length and incidence. Disrupted cilia morphology also occurred in patient-derived photoreceptors, associated with progressive degeneration and cellular stress. In situ gene editing of a pathogenic mutation rescued protein expression and key cellular phenotypes in RPE and photoreceptors, providing proof of concept for future therapeutic strategies.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Comprehensive analysis of the PRPF31 gene in retinitis pigmentosa patients: Four novel Alu-mediated copy number variations at the PRPF31 locus
    Chen, Zhixuan
    Chen, Jieqiong
    Gao, Min
    Liu, Yang
    Wu, Yidong
    Wang, Yafang
    Gong, Yuanyuan
    Yu, Suqin
    Liu, Wenjia
    Wan, Xiaoling
    Sun, Xiaodong
    HUMAN MUTATION, 2022, 43 (12) : 2279 - 2294
  • [32] CNOT3 Is a Modifier of PRPF31 Mutations in Retinitis Pigmentosa with Incomplete Penetrance
    Venturini, Giulia
    Rose, Anna M.
    Shah, Amna Z.
    Bhattacharya, Shomi S.
    Rivolta, Carlo
    PLOS GENETICS, 2012, 8 (11):
  • [33] Autosomal dominant retinitis pigmentosa with reduced penetrance due to an intronic mutation in PRPF31
    Ben-Yosef, Tamar
    Nasser, Tahlil Ali
    Zayit-Soudry, Shiri
    Banin, Eyal
    Sharon, Dror
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [34] Novel PRPF31 mutations associated with Chinese autosomal dominant retinitis pigmentosa patients
    Xu, Fei
    Sui, Ruifang
    Liang, Xiaofang
    Li, Hui
    Jiang, Ruxin
    Dong, Fangtian
    MOLECULAR VISION, 2012, 18 (308-09): : 3021 - 3028
  • [35] Genomic rearrangements of the PRPF31 gene account for 2.5% of autosomal dominant retinitis pigmentosa
    Sullivan, Lori S.
    Bowne, Sara J.
    Seaman, C. Robyn
    Blanton, Susan H.
    Lewis, Richard A.
    Heckenlively, John R.
    Birch, David G.
    Hughbanks-Wheaton, Dianna
    Daiger, Stephen P.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2006, 47 (10) : 4579 - 4588
  • [36] Identification and functional characterization of a novel splicing mutation in RP gene PRPF31
    Liu, Jing Yu
    Dai, Xiaohua
    Sheng, Jiqun
    Cui, Xin
    Wang, Xu
    Jiang, Xueqing
    Tu, Xin
    Tang, Zhaohui
    Bai, Yan
    Liu, Mugen
    Wang, Qing K.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 367 (02) : 420 - 426
  • [37] Autosomal dominant retinitis pigmentosa with incomplete penetrance due to an intronic mutation of the PRPF31 gene
    Ali-Nasser, Tahleel
    Zayit-Soudry, Shiri
    Banin, Eyal
    Sharon, Dror
    Ben-Yosef, Tamar
    MOLECULAR VISION, 2022, 28 : 359 - 368
  • [38] Mutation spectrum of PRPF31, genotype-phenotype correlation in retinitis pigmentosa, and opportunities for therapy
    Wheway, Gabrielle
    Douglas, Andrew
    Baralle, Diana
    Guillot, Elsa
    EXPERIMENTAL EYE RESEARCH, 2020, 192
  • [39] Whole Exome Sequencing of a Dominant Retinitis Pigmentosa Family Identifies a Novel Deletion in PRPF31
    Villanueva, Adda
    Willer, Jason R.
    Bryois, Julien
    Dermitzakis, Emmanouil T.
    Katsanis, Nicholas
    Davis, Erica E.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (04) : 2121 - 2129
  • [40] Transcriptional regulation of PRPF31 gene expression by MSR1 repeat elements causes incomplete penetrance in retinitis pigmentosa
    Anna M. Rose
    Amna Z. Shah
    Giulia Venturini
    Abhay Krishna
    Aravinda Chakravarti
    Carlo Rivolta
    Shomi S. Bhattacharya
    Scientific Reports, 6