Robust NaO2 Electrochemistry in Aprotic Na-O2 Batteries Employing Ethereal Electrolytes with a Protic Additive

被引:33
|
作者
Abate, Iwnetim I. [1 ]
Thompson, Leslie E. [1 ]
Kim, Ho-Cheol [1 ]
Aetukuri, Nagaphani B. [1 ]
机构
[1] IBM Res Almaden, 650 Harry Rd, San Jose, CA 95120 USA
来源
关键词
NONAQUEOUS LI-O-2; SODIUM SUPEROXIDE;
D O I
10.1021/acs.jpclett.6b00856
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aprotic metal-oxygen batteries, such as Li-O-2 and Na-O-2 batteries, are of topical research interest as high specific energy alternatives to state-of-the-art Li-ion batteries. In particular, Na-O-2 batteries with NaO2 as the discharge product offer higher practical specific energy with better rechargeability and round-trip energy efficiency when compared to Li-O-2 batteries. In this work, we show that the electrochemical deposition and dissolution of NaO2 in Na-O-2 batteries is unperturbed by trace water impurities in Na-O-2 battery electrolytes, which is desirable for practical battery applications. We find no evidence for the formation of other discharge products such as Na2O2 center dot H2O. Furthermore, the electrochemical efficiency during charge remains near ideal in the presence of trace water in electrolytes. Although sodium anodes react with trace water leading to the formation of a high-impedance solid electrolyte interphase, the increase in discharge overpotential is only similar to 100 mV when compared to cells employing nominally anhydrous electrolytes.
引用
收藏
页码:2164 / 2169
页数:6
相关论文
共 50 条
  • [31] Adsorption of Li2O2, Na2O2, and NaO2 on TiC(111) Surface for Metal-Air Rechargeable Batteries: A Theoretical Study
    Raz, Keren
    Tereshchuk, Polina
    Golodnitsky, Diana
    Natan, Amir
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (29): : 16473 - 16480
  • [32] Real-Time Monitoring of Surface Effects on the Oxygen Reduction Reaction Mechanism for Aprotic Na-O2 Batteries
    Zhang, Jing
    Zhang, Xia-Guang
    Dong, Jin-Chao
    Radjenovic, Petar M.
    Young, David James
    Yao, Jian-Lin
    Yuan, Ya-Xian
    Tian, Zhong-Qun
    Li, Jian-Feng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (48) : 20049 - 20054
  • [33] Understanding oxygen electrochemistry in aprotic Li-O2 batteries
    Liang Wang
    Yantao Zhang
    Zhenjie Liu
    Limin Guo
    Zhangquan Peng
    Green Energy & Environment, 2017, 2 (03) : 186 - 203
  • [34] Understanding oxygen electrochemistry in aprotic Li-O2 batteries
    Wang, Liang
    Zhang, Yantao
    Liu, Zhenjie
    Guo, Limin
    Peng, Zhangquan
    GREEN ENERGY & ENVIRONMENT, 2017, 2 (03) : 186 - 203
  • [35] Temperature-Dependent Discharge of Li-O2 and Na-O2 Batteries
    Leverick, Graham
    Perez, Gabriela Alvarez
    Stephens, Ryan M.
    Shao-Horn, Yang
    ACS ENERGY LETTERS, 2023, 8 (03) : 1584 - 1589
  • [36] New Insights into the Instability of Discharge Products in Na-O2 Batteries
    Landa-Medrano, Imanol
    Pinedo, Ricardo
    Bi, Xuanxuan
    Ruiz de Larramendi, Idoia
    Lezama, Luis
    Janek, Juergen
    Amine, Khalil
    Lu, Jun
    Rojo, Teofilo
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (31) : 20120 - 20127
  • [37] Elucidation of Parasitic Reaction Mechanisms at Interfaces in Na-O2 Batteries
    Von Gunten, Alex
    Velinkar, Kunal
    Nikolla, Eranda
    Greeley, Jeffrey
    CHEMISTRY OF MATERIALS, 2023, 35 (15) : 5945 - 5952
  • [38] Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries
    McCloskey, Bryan D.
    Garcia, Jeannette M.
    Luntz, Alan C.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (07): : 1230 - 1235
  • [39] Recent progress, advances, and future prospects in Na-O2 batteries
    Pozo-Gonzalo, Cristina
    Ortiz-Vitoriano, Nagore
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 36
  • [40] Research Progress and Future Perspectives on Rechargeable Na-O2 and Na-CO2 Batteries
    Zhi Zheng
    Chang Wu
    Qinfen Gu
    Konstantin Konstantinov
    Jiazhao Wang
    Energy & Environmental Materials, 2021, (02) : 158 - 177