Site-specific chemoproteomic profiling of targets of glyoxal

被引:10
|
作者
Chen, Ying [1 ,2 ]
Qin, Wei [1 ,3 ]
Li, Zehua [1 ,2 ]
Guo, Zhihao [1 ,3 ]
Liu, Yuan [1 ,2 ]
Lan, Tong [1 ,2 ]
Wang, Chu [1 ,2 ,3 ]
机构
[1] Peking Univ, Beijing Natl Lab Mol Sci, Key Lab Bioorgan Chem & Mol Engn, Synthet & Funct Biomol Ctr,Minist Educ, Beijing 100871, Peoples R China
[2] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[3] Peking Univ, Peking Tsinghua Ctr Life Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
chemoproteomics; glycation; glycolysis; glyoxal; m-APA probe; MASS-SPECTROMETRIC ANALYSIS; END-PRODUCTS; CARBOXYMETHYL-LYSINE; DIABETES-MELLITUS; PROTEIN; METHYLGLYOXAL; DERIVATIZATION; PROBE; AGES;
D O I
10.4155/fmc-2019-0221
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Aim: Advanced glycation end products (AGE) are the biomarkers of aging and diabetes which are formed via reactions between glycating agents and biomacromolecules. However, no proteomic study has been reported to systematically investigate the protein substrates of AGEs. Results: In this paper, we used an aniline-based probe to capture the glyoxal-imine intermediate which is the transition sate of glyoxal-derived AGEs. Combined with the tandem orthogonal proteolysis activity-based protein profiling strategy, we successfully identified 962 lysines modified by glyoxal. Conclusion: Enzymes in glycolysis are heavily modified by glyoxal and our biochemical experiments showed that glyoxal can significantly inhibit the activity of GAPDH and glycolysis. These data indicated that AGEs modifications may contribute to pathological processes through impairing the glycolytic process.
引用
收藏
页码:2979 / 2987
页数:9
相关论文
共 50 条
  • [31] Site-specific recombinases
    Dutton, G
    SCIENTIST, 2002, 16 (15): : 29 - 31
  • [32] Site-specific attachment
    Angew Chem (Int Ed Engl), 1 (91-93):
  • [33] Site-specific integration
    Weitzman J.B.
    Genome Biology, 3 (1)
  • [34] Quantitative Chemoproteomic Profiling of Targets of Au(I) Complexes by Competitive Activity-Based Protein Profiling
    Cheng, Xiu-Fen
    Wang, Nan
    Jiang, Zhongyao
    Chen, Zhenzhen
    Niu, Yaxin
    Tong, Lili
    Yu, Ting
    Tang, Bo
    BIOCONJUGATE CHEMISTRY, 2022, 33 (06) : 1131 - 1137
  • [35] How do site-specific DNA-binding proteins find their targets?
    Halford, SE
    Marko, JF
    NUCLEIC ACIDS RESEARCH, 2004, 32 (10) : 3040 - 3052
  • [36] A protease substrate profiling method that links site-specific proteolysis with antibiotic resistance
    Sandersjoo, Lisa
    Kostallas, George
    Lofblom, John
    Samuelson, Patrik
    BIOTECHNOLOGY JOURNAL, 2014, 9 (01) : 155 - 162
  • [37] Site-Specific Competitive Kinase Inhibitor Target Profiling Using Phosphonate Affinity
    van Bergen, Wouter
    Nederstigt, Anneroos E.
    Heck, Albert J. R.
    Baggelaar, Marc P.
    MOLECULAR & CELLULAR PROTEOMICS, 2025, 24 (02)
  • [38] Unravelling site-specific breast cancer metastasis: a microRNA expression profiling study
    Schrijver, Willemijne A. M. E.
    van Diest, Paul J.
    Moelans, Cathy B.
    ONCOTARGET, 2017, 8 (02) : 3111 - 3123
  • [39] Site-specific azide-acetyllysine photochemistry on epigenetic readers for interactome profiling
    Sudhamalla, Babu
    Dey, Debasis
    Breski, Megan
    Tiffany Nguyen
    Islam, Kabirul
    CHEMICAL SCIENCE, 2017, 8 (06) : 4250 - 4256
  • [40] Site-specific modeling tools for predicting the impact of corrupting mainbeam targets on STAP
    Ohnishi, K
    Bergin, JS
    Teixeira, CM
    Techau, PM
    2005 IEEE International Radar, Conference Record, 2005, : 393 - 398