Analytical Solution of Linear and Non-Linear Space-Time Fractional Reaction-Diffusion Equations

被引:0
|
作者
Yildirim, Ahmet [1 ]
Sezer, Sefa A. [1 ]
机构
[1] Ege Univ, Izmir, Turkey
关键词
homotopy perturbation method; fractional reaction-diffusion equation; space-time fractional derivative; HOMOTOPY PERTURBATION METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; VARIATIONAL ITERATION METHOD; ASYMPTOTIC METHODS; SYSTEM; PREY;
D O I
暂无
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this study, we present the homotopy perturbation method (HPM) for finding the analytical solution of linear and non-linear space-time fractional reaction-diffusion equations (STFRDE) on a finite domain. These equations are obtained from standard reaction-diffusion equations by replacing a second-order space derivative by a fractional derivative of order and a first-order time derivative by a fractional derivative of order. Some examples are given. Numerical results show that the homotopy perturbation method is easy to implement and accurate when applied to linear and non-linear space-time fractional reaction-diffusion equations.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Analytical solution of the reaction-diffusion equation with space-time fractional derivatives by means of the generalized differential transform method
    Garg, Mridula
    Manohar, Pratibha
    [J]. KUWAIT JOURNAL OF SCIENCE, 2013, 40 (01) : 23 - 34
  • [22] Reaction-diffusion equations in space-time periodic media
    Nadin, Gregoire
    [J]. COMPTES RENDUS MATHEMATIQUE, 2007, 345 (09) : 489 - 493
  • [23] An Analytical Model for Molecular Communication Over a Non-Linear Reaction-Diffusion Medium
    Abin, Hamidreza
    Gohari, Amin
    Nasiri-Kenari, Masoumeh
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (12) : 8042 - 8054
  • [24] Space-time chaos in a system of reaction-diffusion equations
    Zaitseva, M. F.
    Magnitskii, N. A.
    [J]. DIFFERENTIAL EQUATIONS, 2017, 53 (11) : 1519 - 1523
  • [25] LARGE TIME BEHAVIOR OF SOLUTIONS OF A NON-LINEAR REACTION-DIFFUSION EQUATION
    CORTAZAR, C
    ELGUETA, M
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1987, 13 (04): : 487 - 497
  • [26] Stochastic solution of space-time fractional diffusion equations
    Meerschaert, MM
    Benson, DA
    Scheffler, HP
    Baeumer, B
    [J]. PHYSICAL REVIEW E, 2002, 65 (04): : 4
  • [27] Analytical solution of non-linear fractional order Swift-Hohenberg equations
    Alrabaiah, Hussam
    Ahmad, Israr
    Shah, Kamal
    Mahariq, Ibrahim
    Rahman, Ghaus Ur
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2021, 12 (03) : 3099 - 3107
  • [28] Parabolic equations with non-linear, degenerate and space-time dependent operators
    Porzio, Maria Michaela
    Pozio, Maria Assunta
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (01) : 31 - 70
  • [29] Exact solutions of space-time dependent non-linear Schrodinger equations
    Ruan, HY
    Li, HJ
    Chen, YX
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (09) : 1077 - 1087
  • [30] Space-Time Isogeometric Analysis for linear and non-linear elastodynamics
    Saade, C.
    Lejeunes, S.
    Eyheramendy, D.
    Saad, R.
    [J]. COMPUTERS & STRUCTURES, 2021, 254