Using hadron-in-jet data in a global analysis of D* fragmentation functions

被引:45
|
作者
Anderle, Daniele P. [1 ]
Kaufmann, Tom [2 ]
Stratmann, Marco [2 ]
Ringer, Felix [3 ]
Vitev, Ivan [4 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Lancaster Manchester Sheffield Consortium Fundame, Manchester M13 9PL, Lancs, England
[2] Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
[3] Lawrence Berkeley Natl Lab, Nucl Sci Div, Berkeley, CA 94720 USA
[4] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
关键词
HEAVY-QUARK PRODUCTION; QCD CORRECTIONS; E+E-ANNIHILATION; MESON PRODUCTION; CROSS-SECTION; D-STAR; COLLISIONS; FLAVOR; TEV;
D O I
10.1103/PhysRevD.96.034028
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a novel global QCD analysis of charged D*-meson fragmentation functions at next-toleading order accuracy. This is achieved by making use of the available data for single-inclusive D*-meson production in electron-positron annihilation, hadron-hadron collisions, and, for the first time, in-jet fragmentation in proton-proton scattering. It is shown how to include all relevant processes efficiently and without approximations within the Mellin moment technique, specifically for the in-jet fragmentation cross section. The presented technical framework is generic and can be straightforwardly applied to future analyses of fragmentation functions for other hadron species, as soon as more in-jet fragmentation data become available. We choose to work within the zero mass variable flavor number scheme which is applicable for sufficiently high energies and transverse momenta. The obtained optimum set of parton-to D* fragmentation functions is accompanied by Hessian uncertainty sets which allow one to propagate hadronization uncertainties to other processes of interest.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Global segmentation and curvature analysis of volumetric data sets using trivariate B-spline functions
    Soldea, O
    Elber, G
    Rivlin, E
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (02) : 265 - 278
  • [42] Global curvature analysis and segmentation of volumetric data sets using trivariate B-spline functions
    Soldea, O
    Elber, G
    Rivlin, E
    GEOMETRIC MODELING AND PROCESSING 2004, PROCEEDINGS, 2004, : 217 - 226
  • [43] Analysis of π0, K0S, and η fragmentation functions using single-inclusive annihilation data including BESIII measurements
    Li, Mengyang
    Anderle, Daniele Paolo
    Xing, Hongxi
    Zhao, Yuxiang
    PHYSICAL REVIEW D, 2025, 111 (03)
  • [44] Using a spreadsheet's hidden functions for data analysis
    Ouchi, GI
    LC GC NORTH AMERICA, 1995, 13 (04) : 312 - +
  • [45] Using a Spreadsheet's Hidden Functions for Data Analysis
    Ouchi, G. I.
    LG -GC, 13 (04):
  • [46] Integrative analysis of '-omics' data using penalty functions
    Zhao, Qing
    Shi, Xingjie
    Huang, Jian
    Liu, Jin
    Li, Yang
    Ma, Shuangge
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2015, 7 (01) : 99 - 108
  • [47] ANALYSIS OF PERIODIC DATA USING WALSH-FUNCTIONS
    BROADBENT, HA
    MAKSIK, YA
    BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 1992, 24 (02): : 238 - 247
  • [48] First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis
    Ethier, J. J.
    Sato, N.
    Melnitchouk, W.
    PHYSICAL REVIEW LETTERS, 2017, 119 (13)
  • [49] Determination of αs at NLO*+NNLL from a global fit of the low-z parton-to-hadron fragmentation functions in e+ e- and DIS collisions
    Perez-Ramos, Redamy
    d'Enterria, David
    XLIV INTERNATIONAL SYMPOSIUM ON MULTIPARTICLE DYNAMICS (ISMD 2014), 2015, 90
  • [50] Global Warming Analysis and Prediction Using Data Science
    Reddy, M. Purushotham
    Aneesh, A.
    Praneetha, K.
    Vijay, S.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 1055 - 1059