Development of Fuzzy Inference System for Automatic Tea Making

被引:0
|
作者
Ahamed, Nizam Uddin [1 ]
Bin Taha, Zahari [1 ]
Khairuddin, Ismail B. Mohd [1 ]
Rabbi, Mohammad Fazle [2 ]
Sikandar, Tasriva [2 ]
Palaniappan, Rajkumar [3 ]
Ali, Md. Asraf [4 ]
Rahman, S. A. M. Matiur [4 ]
Sundaraj, K. [5 ]
机构
[1] Univ Malaysia Pahang, Fac Mfg Engn, iMAMS Lab, Pekan 26600, Malaysia
[2] Univ Malaysia Pahang, Fac Elect & Elect Engn, Pekan 26600, Malaysia
[3] VIT Univ, Sch Elect Engn, Vellore, Tamil Nadu, India
[4] Daffodil Int Univ, Dhaka, Bangladesh
[5] Univ Tekn Malaysia Melaka, Fac Elect & Comp Engn, Durian Tunggal, Melaka, Malaysia
关键词
Fuzzy inference system; tea grading; automatic tea maker;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a fuzzy inference system has been developed for automatic tea making process. The system takes five inputs and gives two output which determines the grade of black tea and milk tea. Specifically, the proposed system considers five important characteristics of hot tea beverage such as water temperature, sugar, milk, brewing time and tea leaves quantity for grading the standard of the drink according to the consumer's requirement. Both black tea and milk tea can be rated with a grade based on the human expert judgment which is according to the taste and aroma of the tea. This automatic tea making system can let the users choose their preferred type of tea without figuring out the complicated process to making a cup of hot tea beverage.
引用
收藏
页码:196 / 201
页数:6
相关论文
共 50 条
  • [21] DESIGN OF A FUZZY INFERENCE SYSTEM FOR AUTOMATIC DFS & BFS ALGORITHM LEARNING ASSESSMENT
    Sanchez-Torrubia, M. G.
    Torres-Blanc, C.
    Cubillo, S.
    COMPUTATIONAL INTELLIGENCE: FOUNDATIONS AND APPLICATIONS: PROCEEDINGS OF THE 9TH INTERNATIONAL FLINS CONFERENCE, 2010, 4 : 308 - 313
  • [22] Adaptive neuro-fuzzy inference system based automatic generation control
    Hosseini, S. H.
    Etemadi, A. H.
    ELECTRIC POWER SYSTEMS RESEARCH, 2008, 78 (07) : 1230 - 1239
  • [23] An Efficient Automatic Intrusion Detection in Cloud Using Optimized Fuzzy Inference System
    Shyla, S. Immaculate
    Sujatha, S. S.
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2020, 14 (04) : 22 - 41
  • [24] Combination of Expert Knowledge and a Genetic Fuzzy Inference System for Automatic Sleep Staging
    Liang, Sheng-Fu
    Kuo, Chih-En
    Shaw, Fu-Zen
    Chen, Ying-Huang
    Hsu, Chia-Hu
    Chen, Jyun-Yu
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (10) : 2108 - 2118
  • [25] Picture inference system: a new fuzzy inference system on picture fuzzy set
    Le Hoang Son
    Pham Van Viet
    Pham Van Hai
    APPLIED INTELLIGENCE, 2017, 46 (03) : 652 - 669
  • [26] Picture inference system: a new fuzzy inference system on picture fuzzy set
    Le Hoang Son
    Pham Van Viet
    Pham Van Hai
    Applied Intelligence, 2017, 46 : 652 - 669
  • [27] Development of multilayer fuzzy inference system for diagnosis of renal cancer
    Singla, Nikita
    Sadawarti, Harsh
    Singla, Jimmy
    Kaur, Balwinder
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (01) : 885 - 898
  • [28] Automatic Classification of Antepartum Cardiotocography Using Fuzzy Clustering and Adaptive Neuro-Fuzzy Inference System
    Fei, Yue
    Huang, Xiaoqian
    Chen, Qinqun
    Chen, Jiamin
    Li, Li
    Hong, Jiaming
    Hao, Zhifeng
    Wei, Hang
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1938 - 1942
  • [29] DEVELOPMENT OF A REALISTIC DRIVING BEHAVIOR BY MEANS OF FUZZY INFERENCE SYSTEM
    Fouladinejad, Nima
    Taib, J. Mohd
    Jalil, M. K. Abd
    JURNAL TEKNOLOGI, 2015, 74 (10): : 69 - 77
  • [30] Automatic Text Summarization Using Fuzzy Inference
    Jafari, Mehdi
    Shahabi, Amir Shahab
    Wang, Jing
    Qin, Yongrui
    Tao, Xiaohui
    Gheisari, Mehdi
    2016 22ND INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC), 2016, : 256 - 260