In this paper, we derive rigorously asymptotic formulas for perturbations in the eigenfrequencies of a Maxwell system due to small changes in the interface of a smooth inclusion. Taking advantage of small perturbations, we use a rigorous asymptotic analysis to develop an asymptotic formula for the case where the eigenvalue of the reference problem is simple or multiple. We show that our asymptotic formulas can be expressed in terms of the electric permittivity and the profile function h modelling the shape perturbation. We assume that our results are ambitious tools to solve the inverse problem of identifying interface changes (deformations) of inclusions, given eigenvalues measurements.
机构:
Univ So Calif, Sch Policy Planning & Dev, Los Angeles, CA 90089 USA
Univ So Calif, USC Gould Sch Law, Los Angeles, CA 90089 USA
Univ Manchester, Manchester M13 9PL, Lancs, EnglandUniv So Calif, Sch Policy Planning & Dev, Los Angeles, CA 90089 USA
Bertelli, Anthony M.
Carson, Jamie L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Georgia, Dept Polit Sci, Athens, GA 30602 USAUniv So Calif, Sch Policy Planning & Dev, Los Angeles, CA 90089 USA
机构:
Department of Fundamental Sciences, Tra Vinh University, 126, Highway 53, Ward 5, Tra VinhNhatrang Educational College, 01 Nguyen Chanh Street, Nhatrang, Khanh Hoa
Hoa C.H.
Long N.T.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics and Computer Science, University of Natural Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi MinhNhatrang Educational College, 01 Nguyen Chanh Street, Nhatrang, Khanh Hoa
机构:
Tokyo Univ Informat Sci, Fac Informat, Wakaba Ku, 1 Onaridai, Chiba 2658501, JapanTokyo Univ Informat Sci, Fac Informat, Wakaba Ku, 1 Onaridai, Chiba 2658501, Japan
机构:
L. N. Gumilyov Eurasian National University, 2, Satbev St, Astana
Institute of Mathematics and Mathematical Modeling, 125, Pushkina St, AlmatyL. N. Gumilyov Eurasian National University, 2, Satbev St, Astana