Facile constructing of isotype g-C3N4(bulk)/g-C3N4(nanosheet) heterojunctions through thermal polymerization of single-source glucose-modified melamine: An efficient charge separation system for photocatalytic hydrogen production

被引:73
|
作者
Sun, Shaodong [1 ]
Li, Jia [1 ]
Song, Peng [1 ]
Cui, Jie [1 ,2 ]
Yang, Qing [1 ]
Zheng, Xing [2 ]
Yang, Zhimao [3 ]
Liang, Shuhua [1 ]
机构
[1] Xian Univ Technol, Sch Mat Sci & Engn, Shaanxi Prov Key Lab Elect Mat & Infiltrat Techno, Xian 710048, Shaanxi, Peoples R China
[2] Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg China, Xian 710048, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Sci, State Key Lab Mech Behav Mat, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Xian 710049, Shaanxi, Peoples R China
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
Isotype heterostructure; g-C3N4; Glucose-modified melamine; Photocatalytic hydrogen evolution; GRAPHITIC CARBON NITRIDE; IN-SITU CONSTRUCTION; Z-SCHEME; HOLLOW MICROSPHERES; BAND ALIGNMENT; CO2; REDUCTION; G-C3N4/G-C3N4; WATER; G-C3N4; PERFORMANCE;
D O I
10.1016/j.apsusc.2019.143985
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Constructing isotype heterostructure is an effective way to promote the separation of photogenerated charge carriers for graphitic carbon nitride (g-C3N4). However, the interface derived from different source precursors is not good enough for the charge separation of g-C3N4/g-C3N4 isotype heterojunctions, resulting in a limited improvement of photocatalytic performance. Here, we presented a rational design and synthesis of the gC(3)N(4)(bulk)/g-C3N4(nanosheet) (denoted as BCN/CNNS) isotype heterojunctions with tight interfaces for enhanced photocatalytic hydrogen evolution. Using glucose-modified melamine as the single-source precursor for the first time, an isotype heterojunction was in situ formed at the interface between bulk g-C3N4 and g-C3N4 nanosheet. Due to the enhanced visible light absorption and promoted charge carrier separation, the in situ formed BCN/CNNS isotype heterojunctions exhibited highly improved photocatalytic hydrogen evolution activity under visible light irradiation, which was 16.4 and 11.5 times than those of the bare BCN and CNNS, respectively. Such an in situ formed isotype heterojunction with tight interfaces originated from the thermal polymerization of single-source glucose-modified melamine would present a new avenue for developing efficient g-C3N4-based isotype heterojunction photocatalysts.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution
    Jizhou Jiang
    Zhiguo Xiong
    Haitao Wang
    Guodong Liao
    Saishuai Bai
    Jing Zou
    Pingxiu Wu
    Peng Zhang
    Xin Li
    Journal of Materials Science & Technology, 2022, 118 (23) : 15 - 24
  • [42] Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution
    Jiang, Jizhou
    Xiong, Zhiguo
    Wang, Haitao
    Liao, Guodong
    Bai, Saishuai
    Zou, Jing
    Wu, Pingxiu
    Zhang, Peng
    Li, Xin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 118 : 15 - 24
  • [43] Soluble g-C3N4 nanosheets: Facile synthesis and application in photocatalytic hydrogen evolution
    Wu, Xinhe
    Wang, Xuefei
    Wang, Fazhou
    Yu, Huogen
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 247 : 70 - 77
  • [44] Facile preparation of KBiO3/g-C3N4 composites with microwave irradiation for photocatalytic hydrogen production
    Montalvo-Herrera, Teresa
    Sanchez-Martinez, Daniel
    Hernandez-Uresti, Diana B.
    Zarazua-Morin, Elvira
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2019, 94 (11) : 3440 - 3446
  • [45] The Preparation of g-C3N4/ZnIn2S4 Nano-Heterojunctions and Their Enhanced Efficient Photocatalytic Hydrogen Production
    Li, Hubing
    Wang, Yaoting
    Wang, Song
    Xiao, Xin
    MOLECULES, 2024, 29 (11):
  • [46] Molecular engineering of g-C3N4 with spatial charge separation for enhancing photocatalytic performances
    Guo, Mingrui
    Chen, Meng
    Xu, Jixiang
    Wang, Jing
    Wang, Lei
    MATERIALS CHEMISTRY FRONTIERS, 2022, 6 (14) : 1964 - 1972
  • [47] Construction of g-C3N4/S-g-C3N4 metal-free isotype heterojunctions with an enhanced charge driving force and their photocatalytic performance under anoxic conditions
    Hu, Shaozheng
    Ma, Lin
    Li, Fayun
    Fan, Zhiping
    Wang, Qiong
    Bai, Jin
    Kang, Xiaoxue
    Wu, Guang
    RSC ADVANCES, 2015, 5 (110): : 90750 - 90756
  • [48] Rapid thermal surface engineering of g-C3N4 for efficient hydrogen evolution
    Bai, Jirong
    Wang, Zhilei
    Zhou, Pin
    Xu, Peng
    Deng, Yaoyao
    Zhou, Quanfa
    APPLIED SURFACE SCIENCE, 2021, 539
  • [49] Photocatalytic degradation of toluene by In2S3/g-C3N4 heterojunctions
    Zhang M.
    Liu X.
    Zeng X.
    Wang M.
    Shen J.
    Liu R.
    Chemical Physics Letters: X, 2020, 7
  • [50] DFT Study on S-Scheme g-C3N4/g-C3N4(P) Heterostructure Photocatalyst in Hydrogen Production Process by Photocatalytic Water Splitting
    Dai, Houmei
    Li, Xin
    Hou, Yanglai
    Wang, Dongliang
    Wei, Ran
    CATALYSIS LETTERS, 2025, 155 (02)