High performance fiber-shaped flexible asymmetric supercapacitor based on MnO2 nanostructure composited with CuO nanowires and carbon nanotubes

被引:22
|
作者
Zhang, Qian [1 ]
Zhang, Chaozhe [1 ]
Yang, Fengjian [1 ]
Yu, Jianhua [1 ]
Dong, Hongzhou [1 ]
Sui, Jing [1 ]
Chen, Yingjie [1 ]
Yu, Liyan [1 ]
Dong, Lifeng [1 ,2 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266042, Peoples R China
[2] Hamline Univ, Dept Phys, St Paul, MN 55104 USA
基金
中国国家自然科学基金; 对外科技合作项目(国际科技项目);
关键词
Fiber-shaped; Supercapacitor; MnO2; CuO wire; Carbon nanotubes; REDUCED GRAPHENE OXIDE; HIGH-ENERGY-DENSITY; COPPER FOAM; WIRE; ELECTRODES; ARRAYS; NANOSHEETS; HYDROXIDE; NETWORKS; DESIGN;
D O I
10.1016/j.ceramint.2022.01.284
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The demand for wearable electronics has greatly promoted the development of flexible supercapacitors. Herein, we develop a series of approaches to fabricate a fiber-shaped supercapacitor with flexibility. In the device, CuO@MnO2, carbon nanotube (CNT)@MnO2 and PVA-KOH are respectively used as inner electrode, outer electrode and gel electrolyte. The approaches including in-situ growth of CNTs, in-situ etching removal of SiO2 template and in-situ filling of gel electrolyte via hydrothermal process are explored to protect the device from structure damage caused by external forces and to maximize effective contact areas between active electrode materials and gel electrolyte. The optimized supercapacitor of copper wire@CuO@MnO2//PVA-KOH// CNT@MnO2 demonstrates a good capacitive performance (5.97 F cm(-3)) and exhibits a high energy density (0.38 mWh cm(-3)) at a power density of 25.5 mW cm(-3). In addition, it has perfect cycling stability (77% after 2000 cycles) with excellent flexibility. Therefore, this work will provide desirable processes to construct fiber-shaped supercapacitors as flexible and wearable energy storage devices.
引用
收藏
页码:13996 / 14003
页数:8
相关论文
共 50 条
  • [21] MnO2/Porous Carbon Nanotube/MnO2 Nanocomposites for High-Performance Supercapacitor
    Wang, Jiahao
    Guo, Xihong
    Cui, Rongli
    Huang, Huan
    Liu, Bing
    Li, Ying
    Wang, Dan
    Zhao, Dangui
    Dong, Jinquan
    Li, Shucun
    Sun, Baoyun
    ACS APPLIED NANO MATERIALS, 2020, 3 (11) : 11152 - 11159
  • [22] High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2
    Gao, Hongcai
    Xiao, Fei
    Ching, Chi Bun
    Duan, Hongwei
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (05) : 2801 - 2810
  • [23] A High Performance Stretchable Asymmetric Fiber-Shaped Supercapacitor with a Core-Sheath Helical Structure
    Yu, Jiali
    Lu, Weibang
    Smith, Joseph P.
    Booksh, Karl S.
    Meng, Linghui
    Huang, Yudong
    Li, Qingwen
    Byun, Joon-Hyung
    Oh, Youngseok
    Yan, Yushan
    Chou, Tsu-Wei
    ADVANCED ENERGY MATERIALS, 2017, 7 (03)
  • [24] A new asymmetric supercapacitor based on λ-MnO2 and activated carbon electrodes
    Xue, Yun
    Chen, Ye
    Zhang, Mi-Lin
    Yan, Yong-De
    MATERIALS LETTERS, 2008, 62 (23) : 3884 - 3886
  • [25] Flexible and solid-state asymmetric supercapacitor based on ternary graphene/MnO2/carbon black hybrid film with high power performance
    Chen, Junchen
    Wang, Yaming
    Cao, Jianyun
    Liu, Yan
    Ouyang, Jia-Hu
    Jia, Dechang
    Zhou, Yu
    ELECTROCHIMICA ACTA, 2015, 182 : 861 - 870
  • [26] High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes
    Cao, Jianyun
    Wang, Yaming
    Zhou, Yu
    Ouyang, Jia-Hu
    Jia, Dechang
    Guo, Lixin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 689 : 201 - 206
  • [27] MnO2 nanowires electrodeposited on freestanding graphenated carbon nanotubes as binder-free electrodes with enhanced supercapacitor performance
    Lei, Rui
    Zhang, Hua
    Lei, Wen
    Li, Dan
    Fang, Qing
    Ni, Hongwei
    Gu, Huazhi
    MATERIALS LETTERS, 2019, 249 : 140 - 142
  • [28] High-performance supercapacitor based on actived carbon–MnO2–polyaniline composite
    Wangyang Chen
    Xuquan Tao
    Denghu Wei
    Huaisheng Wang
    Qiang Yu
    Yuchao Li
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 1357 - 1362
  • [29] Bamboo-Based Activated Carbon @ MnO2 Nanocomposites for Flexible High-Performance Supercapacitor Electrode Materials
    Huang, Tianfu
    Qiu, Zehai
    Wu, Dewu
    Hu, Zhibiao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (08): : 6312 - 6323
  • [30] Freestanding MnO2 nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes
    Zhou, Dan
    Lin, Huiming
    Zhang, Feng
    Niu, Hao
    Cui, Liru
    Wang, Qian
    Qu, Fengyu
    ELECTROCHIMICA ACTA, 2015, 161 : 427 - 435