Distributional Borel summability of odd anharmonic oscillators

被引:28
|
作者
Caliceti, E [1 ]
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
来源
关键词
D O I
10.1088/0305-4470/33/20/303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is proved that the divergent Rayleigh-Schrodinger perturbation expansions for the eigenvalues of any odd anharmonic oscillator are Borel summable in the distributional sense to the resonances naturally associated with the system.
引用
收藏
页码:3753 / 3770
页数:18
相关论文
共 50 条
  • [31] THE THOOFT REPARAMETRIZATION RESPECTS BOREL SUMMABILITY
    KOPPER, C
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (07) : 1919 - 1920
  • [32] Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators
    Jentschura, Ulrich D.
    Surzhykov, Andrey
    Zinn-Justin, Jean
    ANNALS OF PHYSICS, 2010, 325 (05) : 1135 - 1172
  • [33] BOREL SUMMABILITY OF DIVERGENT BORN SERIES
    LOVITCH, L
    MARZIANI, MF
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1983, 76 (04): : 615 - 626
  • [34] CESARO AND BOREL-TYPE SUMMABILITY
    BORWEIN, D
    MARKOVICH, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (04) : 1108 - 1112
  • [35] GENERAL ANHARMONIC OSCILLATORS
    BANERJEE, K
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 364 (1717): : 265 - 275
  • [36] On aclass of anharmonic oscillators
    Chatzakou, Marianna
    Delgado, Julio
    Ruzhansky, Michael
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 153 : 1 - 29
  • [37] Borel summability of the heat equation with variable coefficients
    Costin, O.
    Park, H.
    Takei, Y.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (04) : 3076 - 3092
  • [38] A NEW CRITERION ON BOREL SUMMABILITY OF FOURIER SERIES
    SAHNEY, BN
    KATHAL, PD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 315 - &
  • [39] BOREL SUMMABILITY FOR A NON-POLYNOMIAL POTENTIAL
    AUBERSON, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 84 (04) : 531 - 546
  • [40] Borel-Leroy summability of a nonpolynomial potential
    da Costa, G. A. T. F.
    Gomes, M.
    REPORTS ON MATHEMATICAL PHYSICS, 2008, 61 (03) : 401 - 415