Navier-Stokes equations;
suitable weak solutions;
Faedo-Galerkin approximation;
finite element approximation;
D O I:
10.1016/j.matpur.2007.04.009
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Faedo-Galerkin weak solutions of the three-dimensional Navier-Stokes equations supplemented with Dirichlet boundary conditions in bounded domains are suitable in the sense of Scheffer [V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys. 55 (2) (1977) 97-112] provided they are constructed using finite-dimensional approximation spaces having a discrete commutator property and satisfying a proper inf-sup condition. Finite element and wavelet spaces appear to be acceptable for this purpose. This result extends that of [J.-L. Guermond, Finite-element-based Faedo-Galerkin weak solutions to the Navier-Stokes equations in the three-dimensional torus are suitable, J. Math. Pures Appl. (9) 85 (3) (2066) 451-464] where periodic boundary conditions were assumed. (c) 2007 Elsevier Masson SAS. All rights reserved.
机构:
Fachbereich Mathematik, Technische Universität Darmstadt
Center of Smart Interfaces (CSI), Technische Universität DarmstadtFachbereich Mathematik, Technische Universität Darmstadt
Farwig R.
Okabe T.
论文数: 0引用数: 0
h-index: 0
机构:
Mathematical Institute, Tohoku UniversityFachbereich Mathematik, Technische Universität Darmstadt