Disjoint universality for families of Taylor-type, operators

被引:15
|
作者
Vlachou, V. [1 ]
机构
[1] Univ Patras, Dept Math, Patras 26500, Greece
关键词
Universal Taylor series; Multiple universality; Disjoint universality; JOINT UNIVERSALITY; SERIES;
D O I
10.1016/j.jmaa.2016.11.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a necessary and sufficient condition so that we have disjoint universality for sequences of operators that map a holomorphic function to a partial sum of its Taylor expansion. This problem is connected with doubly universal Taylor series and this is an effort to generalize the concept to multiply universal Taylor series. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1318 / 1330
页数:13
相关论文
共 50 条
  • [21] KERNELS OF OPERATORS ON BANACH SPACES INDUCED BY ALMOST DISJOINT FAMILIES
    Horvath, Bence
    Laustsen, Niels jakob
    HOUSTON JOURNAL OF MATHEMATICS, 2024, 50 (01): : 157 - 171
  • [22] Taylor-type simulation of the rolling texture of pure aluminum taking into account the initial texture
    Chen, ZY
    Zhang, XM
    Du, YX
    Yao, ZY
    Liu, CM
    TEXTURES OF MATERIALS, PTS 1 AND 2, 2002, 408-4 : 475 - 480
  • [23] Taylor-type focal cortical dysplasia: is the epilepsy always resistant to medical treatment?
    Del Giudce, Ennio
    Bianchi, Maria Cristina
    Tosetti, Michela
    Varrone, Andrea
    Romano, Alfonso
    Crisanti, Angela Francesca
    Titomanilo, Luigi
    Imperati, Floriana
    EPILEPTIC DISORDERS, 2006, 8 (04) : 289 - 293
  • [24] Modeling work hardening of pearlitic steels by phenomenological and Taylor-type micromechanical models
    Hu, XH
    Van Houtte, P
    Liebeherr, M
    Walentek, A
    Seefeldt, M
    Vandekinderen, H
    ACTA MATERIALIA, 2006, 54 (04) : 1029 - 1040
  • [25] Aberrant neuronal-glial differentiation in Taylor-type focal cortical dysplasia (type IIA/B)
    Chris Englund
    Rebecca D. Folkerth
    Donald Born
    J. Matthew Lacy
    Robert F. Hevner
    Acta Neuropathologica, 2005, 109 : 519 - 533
  • [26] Aberrant neuronal-glial differentiation in Taylor-type focal cortical dysplasia (type IIA/B)
    Englund, C
    Folkerth, RD
    Born, D
    Lacy, JM
    Hevner, RF
    ACTA NEUROPATHOLOGICA, 2005, 109 (05) : 519 - 533
  • [27] Channel Capacity in the Non-asymptotic Regime: Taylor-type Expansion and Computable Benchmarks
    Yang, En-hui
    Meng, Jin
    2012 50TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2012, : 278 - 285
  • [28] Subdural EEG patterns in children with Taylor-type cortical dysplasia: Comparison with nondysplastic lesions
    Turkdogan, D
    Duchowny, M
    Resnick, T
    Jayakar, P
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2005, 22 (01) : 37 - 42
  • [29] Disjoint and simultaneous hypercyclic Rolewicz-type operators
    colakoglu, Nurhan
    Martin, Ozgur
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (06): : 1609 - 1619
  • [30] Understanding monetary policy in Central European countries using Taylor-type rules: the case of the Visegrad four
    Paez-Farrell, Juan
    ECONOMICS BULLETIN, 2007, 5