Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

被引:149
|
作者
Spracklen, D. V. [1 ]
Carslaw, K. S. [1 ]
Merikanto, J. [1 ]
Mann, G. W. [1 ]
Reddington, C. L. [1 ]
Pickering, S. [1 ]
Ogren, J. A. [2 ]
Andrews, E. [2 ]
Baltensperger, U. [3 ]
Weingartner, E. [3 ]
Boy, M. [4 ]
Kulmala, M. [4 ]
Laakso, L. [4 ]
Lihavainen, H. [5 ]
Kivekas, N. [5 ]
Komppula, M. [5 ,20 ]
Mihalopoulos, N. [6 ]
Kouvarakis, G. [6 ]
Jennings, S. G. [7 ]
O'Dowd, C. [7 ]
Birmili, W. [8 ]
Wiedensohler, A. [8 ]
Weller, R. [9 ]
Gras, J. [10 ]
Laj, P. [11 ]
Sellegri, K. [12 ]
Bonn, B. [13 ]
Krejci, R. [14 ]
Laaksonen, A. [5 ,15 ]
Hamed, A. [15 ]
Minikin, A. [16 ]
Harrison, R. M. [17 ]
Talbot, R. [18 ]
Sun, J. [19 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England
[2] NOAA, ESRL Global Monitoring Div, Boulder, CO USA
[3] Paul Scherrer Inst, Lab Atmospher Chem, CH-5232 Villigen, Switzerland
[4] Univ Helsinki, Dept Phys, Helsinki 00014, Finland
[5] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[6] Univ Crete, Dept Chem, Iraklion 71003, Crete, Greece
[7] Natl Univ Ireland, Dept Phys, Galway, Ireland
[8] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany
[9] Alfred Wegener Inst Polar & Marine Res, D-27570 Bremerhaven, Germany
[10] Ctr Australian Weather & Climate Res, CSIRO Marine & Atmospher Res, Aspendale, Vic, Australia
[11] Univ Grenoble 1, CNRS, Lab Glaciol & Geophys Environm, Grenoble, France
[12] Univ Clermont Ferrand 2, CNRS, Lab Meteorol Phys, Clermont Ferrand, France
[13] Goethe Univ Frankfurt, Inst Atmospher & Environm Sci, Frankfurt, Germany
[14] Stockholm Univ, Dept Appl Environm Sci ITM, S-10691 Stockholm, Sweden
[15] Univ Eastern Finland, Dept Math & Phys, Kuopio, Finland
[16] Inst Phys Atmosphare, Deutsch Zentrum Luft & Raumfahrt DLR, Oberpfaffenhofen, Germany
[17] Univ Birmingham, Sch Geog Earth & Environm Sci, Natl Ctr Atmospher Sci, Birmingham B15 2TT, W Midlands, England
[18] Univ New Hampshire, Climate Change Res Ctr, Durham, NH 03824 USA
[19] Chinese Acad Meteorol Sci, CMA, Ctr Atmosphere Watch & Serv, Key Lab Atmospher Chem, Beijing 100081, Peoples R China
[20] Finnish Meteorol Inst, Univ Kuopio, Kuopio, Finland
关键词
CLOUD CONDENSATION NUCLEI; SIZE-RESOLVED AEROSOL; ATMOSPHERIC SULFURIC-ACID; OFF-LINE MODEL; NUCLEATION RATES; FREE TROPOSPHERE; BOUNDARY-LAYER; BOREAL FOREST; REMOTE TROPOSPHERE; GROWTH-RATES;
D O I
10.5194/acp-10-4775-2010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300-2000 cm(-3) in the marine boundary layer and free troposphere (FT) and 1000-10 000 cm(-3) in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2-10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R-2=0.46) but fail to explain the observed seasonal cycle (R-2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=-88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=-25%). Simulated CN concentrations in the continental BL were also biased low (NMB=-74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R-2=0.3) than by increasing the number emission from primary anthropogenic sources (R-2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation-type nucleation parameterizations gave similar agreement with observed monthly mean CN concentrations.
引用
收藏
页码:4775 / 4793
页数:19
相关论文
共 50 条
  • [21] Aerosol particle number concentrations in the upper troposphere and lower stratosphere measured by CARIBIC
    Hermann, M.
    Heintzenberg, J.
    Wiedensohler, A.
    Journal of Aerosol Science, 1999, 30 (Suppl. 1)
  • [22] Impact of particle formation on atmospheric ions and particle number concentrations in an urban environment
    Cheung, H. C.
    Chou, C. C. -K
    Jayaratne, E. R.
    Morawska, L.
    ATMOSPHERIC RESEARCH, 2015, 157 : 127 - 136
  • [23] Variability of aerosol particle concentrations from tyre and brake wear emissions in an urban area
    Samland, Mailin
    Badeke, Ronny
    Grawe, David
    Matthias, Volker
    ATMOSPHERIC ENVIRONMENT-X, 2024, 24
  • [24] Sensitivity of aerosol properties to new particle formation mechanism and to primary emissions in a continental-scale chemical transport model
    Chang, Lim-Seok
    Schwartz, Stephen E.
    McGraw, Robert
    Lewis, Ernie R.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
  • [25] Effects of Diesel Emissions on Black Carbon and Particle Number Concentrations in the Eastern US
    Posner, Laura N.
    Pandis, Spyros N.
    ATMOSPHERE, 2024, 15 (02)
  • [26] Exposure to particle number, surface area and PM concentrations in pizzerias
    Buonanno, G.
    Morawska, L.
    Stabile, L.
    Viola, A.
    ATMOSPHERIC ENVIRONMENT, 2010, 44 (32) : 3963 - 3969
  • [27] Isoprene in poplar emissions: effects on new particle formation and OH concentrations
    Kiendler-Scharr, A.
    Andres, S.
    Bachner, M.
    Behnke, K.
    Broch, S.
    Hofzumahaus, A.
    Holland, F.
    Kleist, E.
    Mentel, T. F.
    Rubach, F.
    Springer, M.
    Steitz, B.
    Tillmann, R.
    Wahner, A.
    Schnitzler, J. -P.
    Wildt, J.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (02) : 1021 - 1030
  • [28] Aerosol decadal trends - Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations
    Asmi, A.
    Coen, M. Collaud
    Ogren, J. A.
    Andrews, E.
    Sheridan, P.
    Jefferson, A.
    Weingartner, E.
    Baltensperger, U.
    Bukowiecki, N.
    Lihavainen, H.
    Kivekas, N.
    Asmi, E.
    Aalto, P. P.
    Kulmala, M.
    Wiedensohler, A.
    Birmili, W.
    Hamed, A.
    O'Dowd, C.
    Jennings, S. G.
    Weller, R.
    Flentje, H.
    Fjaeraa, A. M.
    Fiebig, M.
    Myhre, C. L.
    Hallar, A. G.
    Swietlicki, E.
    Kristensson, A.
    Laj, P.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (02) : 895 - 916
  • [29] Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study
    Gani, Shahzad
    Bhandari, Sahil
    Patel, Kanan
    Seraj, Sarah
    Soni, Prashant
    Arub, Zainab
    Habib, Gazala
    Hildebrandt Ruiz, Lea
    Apte, Joshua S.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (14) : 8533 - 8549
  • [30] Atmospheric aerosol in the Finnish Arctic: Particle number concentrations, chemical characteristics, and source analysis
    Finnish Meteorological Institute, Air Quality Department, Sahaajankatu 22 E, SF-00810 Helsinki, Finland
    WATER AIR SOIL POLLUT., 4 (1997-2002):