Uq(2) Yang-Mills theory

被引:2
|
作者
Benaoum, HB [1 ]
Lagraa, M [1 ]
机构
[1] Univ Es Senia, Phys Theor Lab, Oran, Algeria
来源
关键词
D O I
10.1142/S0217751X98000238
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A Yang-Mills theory is presented using the U-q(2) quantum group. Unlike previous works, no assumptions are required - between the quantum gauge parameters and the quantum gauge fields (or curvature) - to get the quantum gauge variations of the different fields. Furthermore, an adequate definition of the quantum trace is presented. Such a definition leads to a quantum metric, which therefore allows us to construct a U-q(2) quantum Yang-Mills Lagrangian. The Weinberg angle theta is found in terms of this q metric to be tan 2 theta = 2g(12,21)/g21,21-g12,12.
引用
收藏
页码:553 / 568
页数:16
相关论文
共 50 条
  • [31] GRAVITY AND YANG-MILLS THEORY - 2 FACES OF THE SAME THEORY
    CHAKRABORTY, S
    PELDAN, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1994, 3 (04): : 695 - 722
  • [32] YANG-MILLS FIELDS IN GRAVITATIONAL THEORY .1. YANG-MILLS FIELD AND GEOMETRY - HOLONOMIC THEORY
    BURGHARDT, R
    ACTA PHYSICA AUSTRIACA, 1973, 38 (04): : 327 - 335
  • [33] Wilson loops: From 4D supersymmetric Yang-Mills theory to 2D Yang-Mills theory
    Drukker, Nadav
    Giombi, Simone
    Ricci, Riccardo
    Trancanelli, Diego
    PHYSICAL REVIEW D, 2008, 77 (04):
  • [34] SL(2,R) YANG-MILLS THEORY ON A CIRCLE
    BENGTSSON, I
    HALLIN, J
    MODERN PHYSICS LETTERS A, 1994, 9 (35) : 3245 - 3253
  • [35] Savvidy vacuum in SU(2) Yang-Mills theory
    Kay, D
    Kumar, A
    Parthasarathy, R
    MODERN PHYSICS LETTERS A, 2005, 20 (22) : 1655 - 1662
  • [36] Yang-Mills theory in (2+1) dimensions
    Nair, VP
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 108 : 194 - 200
  • [37] Divergencies in noncommutative SU(2) Yang-Mills theory
    Radovanovic, V
    Buric, M
    PARTICLE PHYSICS AND THE UNIVERSE, 2005, 98 : 303 - 306
  • [38] The lattice and quantized Yang-Mills theory
    Creutz, Michael
    MODERN PHYSICS LETTERS A, 2015, 30 (36)
  • [39] HAMILTONIAN OF THE MASSIVE YANG-MILLS THEORY
    SILVEIRA, AD
    PHYSICAL REVIEW D, 1980, 22 (06): : 1390 - 1393
  • [40] AN EXTENDED TOPOLOGICAL YANG-MILLS THEORY
    DEGUCHI, S
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1992, (110): : 57 - 69