Gluing vertex algebras

被引:23
|
作者
Creutzig, Thomas [1 ]
Kanade, Shashank [2 ]
McRae, Robert [3 ,4 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Denver, Dept Math, Denver, CO 80208 USA
[3] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[4] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Vertex operator algebras; Tensor categories; Commutative algebra objects; Braid-reversed equivalences; Coset conformal field theory; Kazhdan-Lusztig categories; MODIFIED REGULAR REPRESENTATIONS; BRAIDED TENSOR CATEGORIES; DIFFERENTIAL-OPERATORS; VIRASORO-ALGEBRAS; MODULE CATEGORIES; LOOP GROUP; AFFINE; FUSION; RATIONALITY; EXTENSIONS;
D O I
10.1016/j.aim.2021.108174
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We relate commutative algebras in braided tensor categories to braid-reversed tensor equivalences, motivated by vertex algebra representation theory. First, for C a braided tensor category, we give a detailed account of the canonical algebra construction in the Deligne product C ? C-rev. Especially, we show that if C is semisimple but not necessarily finite or rigid, then circle plus(x is an element of Irr(C)) X' ? X is a commutative algebra, where X' is a representing object for the functor HomC(center dot & nbsp; circle times(C) X, 1(C)) (assuming X' exists) and the sum runs over all inequivalent simple objects of U. Conversely, let A = circle plus(i is an element of I)& nbsp;U-i & nbsp;?& nbsp;V-i be a simple commutative algebra in a Deligne product U ? V with U semisimple and rigid but not necessarily finite, and V rigid but not necessarily semisimple. We show that if the unit objects 1U and 1V form a commuting pair in A in a suitable sense, then there is a braid-reversed equivalence between (sub)categories of U and V that sends U-i to V-i*.& nbsp;These results apply when U and V are braided (vertex) tensor categories of modules for simple vertex operator algebras U and V, respectively: Given tau : Irr(U) -> Obj(V) such that tau(U) = V, we glue U and V along U ? V via tau to create A = circle plus(x is an element of Irr(U)) X' circle times tau(X). Then under certain conditions, tau extends to a braid-reversed equivalence between U and V if and only if A has a simple conformal vertex algebra structure that (conformally) extends U circle times V. As examples, we glue suitable Kazhdan-Lusztig categories at generic levels to construct new vertex algebras extending the tensor product of two affine vertex subalgebras, and we prove braid-reversed equivalences between certain module subcategories for affine vertex algebras and W-algebras at admissible levels. (C)& nbsp;2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:72
相关论文
共 50 条
  • [31] On indecomposable vertex algebras associated with vertex algebroids
    Jitjankarn, Phichet
    Yamskulna, Gaywalee
    JOURNAL OF ALGEBRA, 2020, 560 : 791 - 817
  • [32] Gluing spectra and boundaries of topological algebras together
    Hadjigeorgiou R.I.
    Journal of Mathematical Sciences, 1999, 95 (6) : 2626 - 2637
  • [33] Cohomological Hall Algebras, Vertex Algebras and Instantons
    Rapcak, Miroslav
    Soibelman, Yan
    Yang, Yaping
    Zhao, Gufang
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (03) : 1803 - 1873
  • [34] W-algebras as coset vertex algebras
    Tomoyuki Arakawa
    Thomas Creutzig
    Andrew R. Linshaw
    Inventiones mathematicae, 2019, 218 : 145 - 195
  • [35] CONFORMAL ALGEBRAS, VERTEX ALGEBRAS, AND THE LOGIC OF LOCALITY
    Smith, Jonathan D. H.
    MATHEMATICA SLOVACA, 2016, 66 (02) : 407 - 420
  • [36] W-algebras as coset vertex algebras
    Arakawa, Tomoyuki
    Creutzig, Thomas
    Linshaw, Andrew R.
    INVENTIONES MATHEMATICAE, 2019, 218 (01) : 145 - 195
  • [37] Cohomological Hall Algebras, Vertex Algebras and Instantons
    Miroslav Rapčák
    Yan Soibelman
    Yaping Yang
    Gufang Zhao
    Communications in Mathematical Physics, 2020, 376 : 1803 - 1873
  • [38] Vertex algebras and the class algebras of wreath products
    Wang, WQ
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2004, 88 : 381 - 404
  • [39] Cluster algebras based on vertex operator algebras
    Zuevsky, Alexander
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (28-29):
  • [40] Trigonometric Lie algebras, affine Lie algebras, and vertex algebras
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    ADVANCES IN MATHEMATICS, 2020, 363