Low-temperature heat capacity of biomacromolecules and the entropic cost of bound water in proteins and nucleic acids (DNA)

被引:20
|
作者
Mrevlishvili, GM [1 ]
机构
[1] Tbilisi State Univ, Dept Phys, GE-380028 Tbilisi, Georgia
关键词
bound water; entropic cost; heat capacity; nucleic acids (DNA); proteins;
D O I
10.1016/S0040-6031(97)00329-8
中图分类号
O414.1 [热力学];
学科分类号
摘要
On the basis of the heat capacity data for proteins and DNA, obtained in the wide temperature range (2-300 K), the amount of the entropic cost of bound water in biomacromolecules is determined. The entropic cost of transferring a single water molecule from the liquid to a site of biopolymers is: 66.9, 58.1, 10.4 and 15.5 J mol(-1) K-1 for fibrous protein (collagen), nucleic acid (double helical DNA), globular protein (Ribonuclease A), desoxynucleotides (d(AMP), d(TMP), d(GMP), d(CMP)) mechanical mixture and DNA polynucleotide chains in the state of statistical coils, respectively. These correspond to transfer-free energy costs as follows (at 298 K): 19.15, 17.5, 3.7 and 4.6 kT mol(-1), respectively. We emphasize that the transfer entropy values determined here are not to be confused with the "entropy of hydration" of polar and nonpolar groups in biopolymers, which are relevant to the thermodynamics of protein folding or DNA double helix winding-unwinding. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 50 条
  • [21] LOW-TEMPERATURE HEAT CAPACITY OF MAGNETIC FLUIDS
    Lebedev, A. V.
    MAGNETOHYDRODYNAMICS, 2008, 44 (04): : 361 - 367
  • [22] Low-temperature heat capacity of tetraborates of potassium
    Gorbunov, V.E.
    Gavrichev, K.S.
    Golushina, L.N.
    Totrova, G.A.
    Plakhotnik, V.N.
    Tul'chinskij, V.B.
    Kovtun, Yu.V.
    Zhurnal Fizicheskoj Khimii, 1993, 67 (03):
  • [23] Low-Temperature Heat Capacity and Magnetization of Ferromagnets
    Novikov, V. V.
    PHYSICS OF THE SOLID STATE, 2009, 51 (10) : 2101 - 2104
  • [24] MEASUREMENT OF LOW-TEMPERATURE HEAT CAPACITY OF METEORITES
    Schaefer, M. W.
    Consolmagno, G. J.
    Britt, D.
    Schaefer, B. E.
    METEORITICS & PLANETARY SCIENCE, 2011, 46 : A205 - A205
  • [25] Low-Temperature Heat Capacity of Lanthanum Hafnate
    V. N. Guskov
    P. G. Gagarin
    A. V. Guskov
    V. V. Tyurin
    K. S. Gavrichev
    Russian Journal of Inorganic Chemistry, 2019, 64 : 1436 - 1441
  • [26] LOW-TEMPERATURE HEAT CAPACITY OF MONOCLINIC ENSTATITE
    Drebushchak, V. A.
    Kovalevskaya, Yulia A.
    Paukov, I. E.
    Surkov, N. V.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2008, 94 (02) : 493 - 497
  • [27] LOW-TEMPERATURE HEAT CAPACITY OF VITREOUS GERMANIA
    ANTONIOU, AA
    MORRISON, JA
    JOURNAL OF APPLIED PHYSICS, 1965, 36 (06) : 1873 - &
  • [28] LOW-TEMPERATURE HEAT-CAPACITY OF BERYL
    GUREVICH, VM
    GAVRICHEV, KS
    GORBUNOV, VE
    FISHELEVA, LI
    KHODAKOVSKY, IL
    GEOKHIMIYA, 1989, (05): : 761 - 764
  • [29] LOW-TEMPERATURE HEAT CAPACITY AND ENTROPY OF HYDROXYAPATITE
    EGAN, EP
    WAKEFIELD, ZT
    ELMORE, KL
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (12) : 5579 - 5580
  • [30] LOW-TEMPERATURE HEAT CAPACITY OF TITANIUM DIBORIDE
    PAUKOV, IE
    KHRIPLOV.LM
    FILATKIN.VS
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY,USSR, 1967, 41 (07): : 866 - &